
Quantification d'un signal sonore

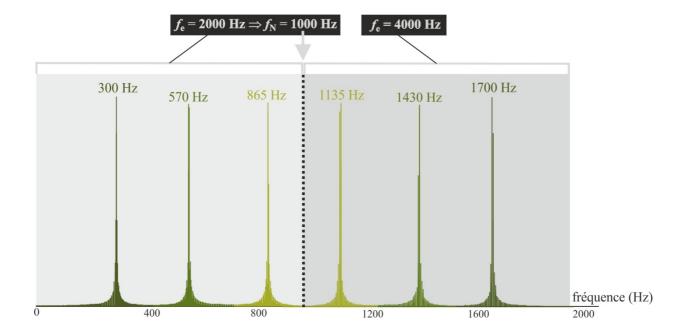
Le **jingle de la SNCF** est quantifié sur 16 bits (65 536 valeurs possibles).

Écouter l'original et le fichier correspondant à une quantification sur 4 bits (16 valeurs possibles seulement).

Ci-dessous un extrait du signal temporel quantifié sur 16 bits puis 4 bits.

Le bruit de quantification est la différence entre le signal quantifié et le signal analogique. Son ordre de grandeur est le quantum $q = \frac{V_{\rm PE}}{2^N}$.

Pour une quantification sur 4 bits, le rapport signal sur bruit est faible (le signal ne prend que les 16 valeurs discrètes : 0, $\frac{V_{\rm PE}}{16}$, $\frac{2V_{\rm PE}}{16}$, $\frac{3V_{\rm PE}}{16}$,..., $\frac{15V_{\rm PE}}{16}$ et le rapport signal/bruit ne vaut que 15 aux plus fortes amplitudes, au lieu de 65535 pour une quantification sur 16 bits. Le signal est... très bruité comme on le constate sur l'enregistrement.


Échantillonnage d'un signal sonore

On considère le son correspondant à trois notes successives de durée 1/3 s chacune et de fréquences **croissantes** dans le même rapport qu'un do mi sol :

- 1135 Hz,
- 1430 Hz (4 demi-tons : multiplication par $2^{4/12}$)
- 1700 Hz (3 demi-tons : multiplication par $2^{3/12}$).

Bien échantillonné (par exemple à 4000 Hz), le signal possède le bon spectre (à droite).

S'il est échantillonné à 2 kHz, toutes les raies sont repliées puisque leur fréquence est supérieure à la fréquence de Nyquist, qui vaut 1 kHz. Les raies ont pour fréquence 865 Hz, 570 Hz et 300 Hz (les complémentaires des raies réelles à 2000 Hz) et sont jouées dans cet ordre (fréquences maintenant décroissantes, à gauche).

