5. COMPARAISON DES CHAMPS ÉLECTRIQUE ET MAGNÉTIQUE STATIONNAIRES

5.1 Sources du champ / action du champ sur une particule chargée

$ec{E}$ est créé par les charges	$ec{B}$ est créé par les courants
force $\vec{F}_{e} = q\vec{E}$	force $\vec{F}_{\rm m} = q\vec{v} \wedge \vec{B}$

5.2 Équations locales

$$\begin{cases} \overrightarrow{\text{rot }} \vec{E} = \vec{0} & \text{M.F} \\ \text{div } \vec{E} = \frac{\rho}{\epsilon_0} & \text{M.G} \end{cases} \begin{cases} \text{div } \vec{B} = 0 & \text{M.T} \\ \overrightarrow{\text{rot }} \vec{B} = \mu_0 \vec{J} & \text{M.A} \end{cases}$$

5.3 Circulation

 \vec{E} à circulation conservative : Théorème d'Ampère : $\oint_{\gamma} \vec{E} \cdot d \overrightarrow{OM} = 0 \Leftrightarrow \vec{E} = -\overrightarrow{\text{grad}}V$ $\oint_{\gamma} \vec{B} \cdot d \overrightarrow{OM} = \mu_0 I_{\text{int}}$ Les lignes de champ ne peuvent pas être fermées. Les lignes de champ peuvent être fermées

5.4 Flux

Théorème de Gauss :	$ec{B}$ champ à flux conservatif :
$\iint_{\mathscr{S}} \vec{E} \cdot d^2 \vec{\mathscr{S}} = \frac{q_{\text{int}}}{\varepsilon_0}$	$\iint_{\mathscr{S}} \vec{B} \cdot d^2 \vec{\mathscr{S}} = 0$

5.5 Continuité / discontinuité des champs

D volumique	$ec{m{E}}$ continu	$ec{B}$ continu
D surfacique	\vec{E} discontinu : $\vec{E}_2 - \vec{E}_1 = \frac{\sigma}{\varepsilon_0} \vec{N}_{1 \to 2}$	\vec{B} discontinu : $\vec{B}_2 - \vec{B}_1 = \mu_0 \vec{J}_{\mathcal{S}} \wedge \vec{N}_{1 \rightarrow 2}$
D linéique	$\propto 1/r$ au voisinage de D	

5.6 Caractère polaire ou axial

\vec{E} est un vecteur <i>polaire</i> : son sens est	\vec{B} est un vecteur <i>axial</i> : son sens
indépendant de la règle d'orientation de	dépend de la règle d'orientation de
l'espace	l'espace

5.7 Symétrie / Antisymétrie plane

Si M appartient à π' plan de symétrie de	Si M appartient à π' , plan de symétrie de
la distribution de charges D, alors $\vec{E}(M)$	la distribution de courants D, alors $\vec{B}(M)$
appartient à π'	est orthogonal à π'
Si M appartient à π'' , plan d'antisymétrie	Si M appartient à π'' , plan d'antisymétrie
de la distribution de charges D, alors	de la distribution de courants D, alors
$\vec{E}(M)$ est orthogonal à π''	$\vec{B}(M)$ appartient à π''

5.8 Invariance des distributions

	Si D est invariante par une isométrie <i>I</i>
	positive (translation, rotation), et
Si D est invariante par une isométrie <i>I</i> (translation, rotation, symétrie plane), et	$M' = I(M)$, alors $\vec{B}(M') = I[\vec{B}(M)]$
$M' = I(M)$, alors $\vec{E}(M') = I[\vec{E}(M)]$	Si D est invariante par une isométrie négative S' (symétrie plane), et
	$M' = S'(M)$, alors $\vec{B}(M') = -S'[\vec{B}(M)]$
Si π'' est un plan d'antisymétrie de la	Si π'' est un plan d'antisymétrie de la
distribution de charges D, et $M'' = S''(M)$,	distribution de courants D, et $M'' = S''(M)$
où S'' est la symétrie plane par rapport à	, où S'' est la symétrie plane par rapport
π'' , alors $\vec{E}(M'') = -S''[\vec{E}(M)]$	à π'' , alors : $\vec{B}(M'') = S''[\vec{B}(M)]$

5.9 Énergie de D

contenue dans le champ \vec{E} créé par D :	contenue dans le champ \vec{B} créé par D :
$U_{\rm e} = \iiint_{\rm espace} \frac{\varepsilon_0 E^2}{2} d^3 \mathscr{V}$	$U_{\rm m} = \iiint_{\rm espace} \frac{B^2}{2\mu_0} d^3 \mathscr{V}$

5.10 Monopôles / dipôles

Si $Q = \sum q_i \neq 0$: monopôle. \vec{E} en $1/r^2$	Pas de monopôle magnétique
Si $Q = 0$ et $\vec{p} \neq \vec{0}$: dipôle électrique.	Si $\vec{m} \neq \vec{0}$: dipôle magnétique.
$ec{E}$ en 1/ r^3	$ec{B}$ en 1/ r^3
Champ (coordonnées sphériques) :	Champ (coordonnées sphériques) :
$E_r = \frac{2p\cos\theta}{4\pi\epsilon_0 r^3}, \ E_\theta = \frac{p\sin\theta}{4\pi\epsilon_0 r^3}, \ E_\phi = 0$	$B_r = \frac{2\mu_0 m \cos \theta}{4\pi r^3}, \ B_\theta = \frac{\mu_0 m \sin \theta}{4\pi r^3}, \ B_\phi = 0$

Actions subies par un dipôle :

$$\vec{F} = \vec{0}$$
, $\vec{\Gamma} = \vec{p} \wedge \vec{E}$

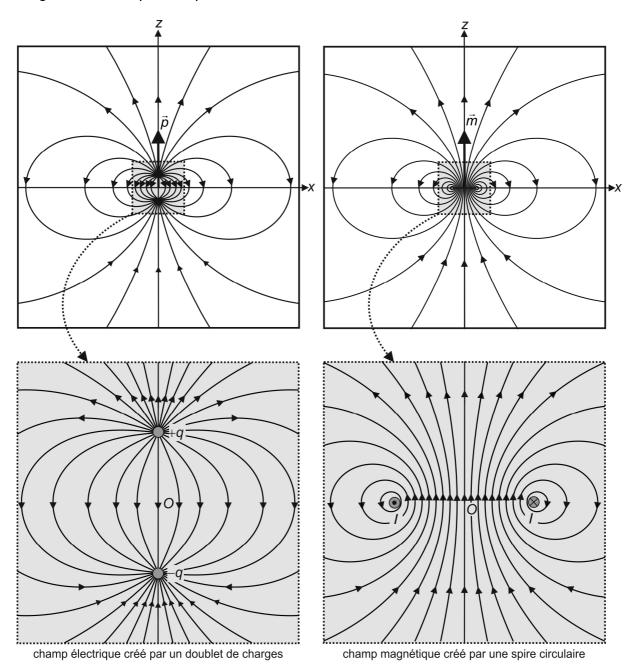
 $E_{\rm p} = -\vec{p} \cdot \vec{E}$ pour un dipôle rigide

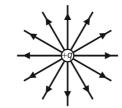
Actions subies par un dipôle :

$$\vec{F} = \vec{0}$$
, $\vec{\Gamma} = \vec{m} \wedge \vec{B}$

 $E_{\rm p} = -\vec{m} \cdot \vec{B}$ pour un dipôle rigide

Lignes de champ des dipôles :





lignes de champ électrique créé par une charge ponctuelle

lignes de champ magnétique créé par un fil rectiligne infini