

4. DÉPLACEMENT D'ÉQUILIBRE

4.1 Évolution d'un système hors d'équilibre à (p,T) fixés

réaction
$$0 = \sum_{i} v_i A_i$$
 d'avancement molaire ξ

à
$$(p,T)$$
 fixées, évolution à $dG = \Delta_r G \cdot d\xi < 0$

à
$$(p,T)$$
 fixées, évolution à $dG = \Delta_r G \cdot d\xi < 0$ or $\Delta_r G = \underbrace{\Delta_r G^0}_{-RT \ln K} + RT \ln \left[\prod_i a_i^{V_i} \right]$

comme le système n'est pas à l'équilibre, $a_i \neq a_i$ éq

$$Q = \prod_{i} a_{i}^{v_{i}} = \frac{\prod_{k} a_{k}^{v_{k}}}{\prod_{j} a_{j}^{v_{j}}} \leftarrow \text{produits} \\ \leftarrow \text{réactifs} \qquad \Rightarrow \Delta_{r}G = RT \ln\left(\frac{Q}{K}\right)$$

quotient de réaction

$$>>>$$
 si $Q < K$, $\Delta_{\Gamma}G < 0 \Rightarrow d\xi > 0 \Rightarrow Q \nearrow$

>>> si
$$Q > K$$
, $\Delta_r G > 0 \Rightarrow d\xi < 0 \Rightarrow Q \searrow$

à l'équilibre thermodynamique, le système atteint un état *final* : $\begin{cases} a_i = a_i \text{ final} \\ c = c_i \end{cases}$

a-t-on toujours
$$\begin{cases} a_{i \text{ final}} = a_{i \text{ \'eq}} \ \forall i \\ Q_{\text{final}} = Q_{\text{\'eq}} = \prod_{i} a_{i \text{ \'eq}}^{v_{i}} = K(T) \end{cases}$$
?

pas s'il y a rupture d'équilibre (physico-chimique)!

4.2 Problème de la rupture d'équilibre

(p,T) fixées

il y a rupture d'équilibre (physico-chimique) quand un des corps intervenant dans la réaction *disparaît*

dans ce cas, on peut avoir $Q_{final} \neq K(T)$ à l'équilibre thermodynamique : G.W ne s'applique pas

supposons Q < K: la réaction se fait dans le sens direct ; un réactif peut disparaître >>> ce réactif peut-il être un constituant d'un mélange gazeux, ou un soluté ?

dans ce cas
$$a_j = p_j / p^0$$
 ou $[A_j] / c^0$ donc $a_j \propto n_j \Rightarrow a_j = 0$ si le réactif disparaît $\Rightarrow Q \rightarrow \infty$, en contradiction avec $Q_{\text{final}} < K(T)$

>>> ce réactif peut-il être un constituant pur dans sa phase (solide, liquide ou gaz) ? dans ce cas $a_j = 1$ ou p/p^0 donc $a_j \times n_j$

 \Rightarrow on peut avoir $Q_{\text{final}} < K$ lorsque le réactif disparaît

si le réactif est un gaz pur dans sa phase, les autres constituants intervenant dans la réaction chimique sont sous phase condensée :

il ne peut y avoir rupture d'équilibre que pour une réaction *hétérogène*, c'est-à-dire faisant intervenir *au moins deux phases différentes* (par exemple un système constitué de deux liquides non miscibles, ou d'une phase solide et d'une phase gazeuse).

pas de rupture pour une réaction *homogène* (système gazeux : les gaz se mélangent toujours, solution liquide, solution solide) : pour une réaction homogène, on a toujours

 $Q_{\text{final}} = Q_{\text{\'eq}} = K(T)$ à l'équilibre thermodynamique (équilibre **stable**)

exemple de réaction hétérogène : dissolution de n mol de AgCl(s) dans de l'eau pure ; on note V le volume d'eau et on néglige le volume de AgCl(s) ajouté

$$AgCI(s) = Ag^{+}(aq) + CI^{-}(aq)$$
 de constante $K_{s}(T)$

E.I (mol.L⁻¹)
$$n/V$$
 0 0 x avancement molaire E.E (mol.L⁻¹) x_{final} x_{final}

supposons qu'il n'y a **pas de rupture d'équilibre** : AgCl(s) existe encore dans l'état final d'équilibre thermodynamique ; G.W s'applique alors :

$$Q_{\text{final}} = Q_{\text{\'eq}} = K_{\text{S}}(T) = x_{\text{\'eq}}^2 \Rightarrow x_{\text{final}} = x_{\text{\'eq}} = s = \sqrt{K_{\text{S}}}$$

>>> hypothèse vérifiée si $x_{\text{\'eq}} \le n/V \Leftrightarrow n/V \ge s$

pas de rupture d'équilibre si on a *saturé* la solution en AgCl(s), c'est-à-dire si on a placé dans 1L d'eau plus de moles de AgCl(s) que la quantité maximale qu'on peut y dissoudre

s solubilité de AgCl(s) dans l'eau pure (mol·L⁻¹) : nombre maximal de AgCl(s) qu'on peut dissoudre par L d'eau pure

>>> si n/V < s, il y a donc rupture d'équilibre : AgCl(s) est totalement dissous

$$\Rightarrow x_{\text{final}} = n / V < s = \sqrt{K_{\text{S}}} \Leftrightarrow Q_{\text{final}} = x_{\text{final}}^2 < K_{\text{S}}$$

AgCl(s) disparaît avant qu'on ait pu atteindre $Q_{final} = Q_{\acute{e}q} = K_{s}(T)$: G.W ne s'applique pas

cherchons maintenant à quelle condition AgCl(s) apparaît dans une solution aqueuse de concentrations initiales $\left[Ag^{+}\right]_{0}$ et $\left[CI^{-}\right]_{0}$

Ia réaction a lieu si
$$Q_0 = \frac{1}{\left[Ag^+\right]_0 \cdot \left[CI^-\right]_0} \le K = \frac{1}{K_s} \Leftrightarrow \left[Ag^+\right]_0 \cdot \left[CI^-\right]_0 \ge K_s$$

sinon AgCl(s) ne se forme pas bien que l'on ait mis en présence Ag⁺ et Cl⁻ et que K >> 1

4.3 Variance

la variance *v* d'un système est le nombre de paramètres d'état *intensifs*, *facteurs d'équilibre*, *indépendants* à l'équilibre thermodynamique

une modification du paramètre modifie la composition à l'équilibre

règle des phases de Gibbs (hors-programme mais la démonstration de cette règle donne la méthode de calcul de variance)

système : N composés $A_1, A_2, ..., A_i, ..., A_N$ pouvant exister sous plusieurs phases φ est le nombre total de phases, notées $\varphi_1, \varphi_2, ..., \varphi_i, ..., \varphi_{\varphi}$

exemple : Zn(s), ZnO(s),
$$O_2(g)$$
, $N_2(g)$: $N=4$, $\phi=3$ une seule phase

siège de la réaction
$$2Zn(s) + O_2(g) = 2ZnO(s)$$

__composé A_i sous la phase φ_i

on suppose que chaque corps existe sous chaque phase : $A_i(\phi_j)$

paramètres intensifs a priori facteurs d'équilibre : pression p, température T, et les

fractions molaires
$$x_i^{\varphi_j} = \frac{n_i^{\varphi_j}}{\sum_{i=1}^{N} n_i^{\varphi_j}}$$
 quantité de matière de $A_i(\varphi_j)$ $\Rightarrow 2 + N\varphi$ paramètres d'état intensifs

relations entre ces paramètres :

>>> constitutives :
$$\sum_{j=1}^{N} x_j^{\varphi_j} = 1 \ \forall j \in [1, \varphi]$$
 : φ relations

>>> équilibres physiques :
$$A_i(\phi_1) = A_i(\phi_2) = ... = A_i(\phi_j) = ... = A_i(\phi_\phi)$$

on a supposé que A; existait dans toutes les phases

pour le premier de ces équilibres :
$$A_i(\varphi_1) = A_i(\varphi_2)$$
 $\Rightarrow \Delta_r G = \mu_i^{\varphi_2} - \mu_i^{\varphi_1} = 0$

donc:
$$\mu_i^{\varphi_1} = \mu_i^{\varphi_2} = \dots = \mu_i^{\varphi_j} = \dots = \mu_i^{\varphi_{\varphi}}$$
 soit $\varphi - 1$ relations $\forall i$

$$\Rightarrow$$
 N $(\varphi - 1)$ relations entre p , T et les $x_i^{\varphi_i}$

car $\mu_i^{\phi_j}$ est une fonction de p,T, et $x_i^{\phi_j}$ remarque : si A_i n'existe pas sous la phase ϕ_1 , on a un paramètre en moins $(x_i^{\phi_1})$ mais une relation en moins $(\phi-2 \text{ relations } \mu_i^{\phi_2} = ... = \mu_i^{\phi_j} = ... = \mu_i^{\phi_{\phi}}$ au lieu de $\phi-1$) \Rightarrow aucun changement

>>> r équilibres chimiques $(\Delta_r G)_m = 0$ pour $m \in [1, r]$

 \Rightarrow *r* relations entre p, T, et les $x_i^{\varphi_i}$

bilan :
$$v = 2 + N\phi - \phi - N(\phi - 1) - r \Rightarrow v = 2 + N - \phi - r$$

règle des phases de Gibbs hors-programme : ne pas utiliser!

attention ! dans certains cas (solutions solides ou liquides par exemple), la pression n'est pas facteur d'équilibre $\Rightarrow v = 1 + N - \varphi - r$

exemple 1:

$$2Zn(s) + O_2(g) = 2ZnO(s)$$
 de constante $K(T)$

4 paramètres d'état intensifs $p, T, x_{O_2(g)}, x_{N_2(g)}$ 2 relations :

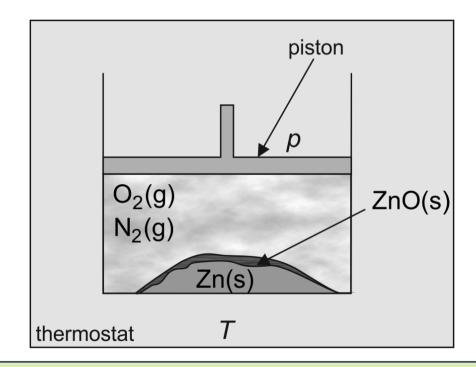
$$>> x_{N_2(g)} + x_{O_2(g)} = 1$$

>>>
$$K(T) = \frac{p^0}{p_{O_2}} = \frac{p^0}{p} \frac{1}{x_{O_2(g)}}$$

p est facteur d'équilibre

$$\Rightarrow$$
 $\mathbf{v} = \mathbf{4} - \mathbf{2} = \mathbf{2}$

(Gibbs :
$$v = 2 + 4 - 3 - 1 = 2$$
)



pour le système étudié, on peut fixer indépendamment p et T à l'équilibre thermodynamique, sans nécessairement provoquer de rupture d'équilibre

exemple 2:

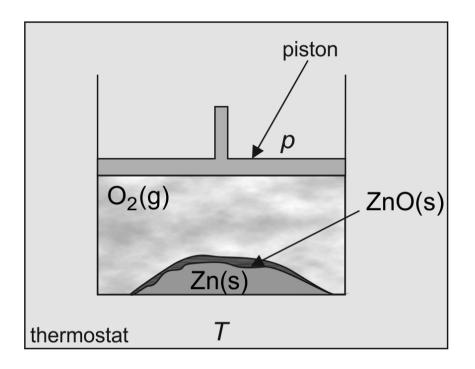
$$2Zn(s) + O_2(g) = 2ZnO(s)$$
 de constante $K(T)$ (il n'y a plus de $N_2(g)$)

2 paramètres d'état intensifs p,T

1 relation :
$$K(T) = \frac{p^0}{p_{O_2}} = \frac{p^0}{p}$$

$$\Rightarrow \mathbf{v} = \mathbf{2} - \mathbf{1} = \mathbf{1}$$

(Gibbs:
$$v = 2 + 3 - 3 - 1 = 1$$
)



 \Rightarrow on peut imposer p, ou T, mais pas les deux indépendamment à l'équilibre thermodynamique ; si on impose T et $p \neq p^0 / K(T)$, on a rupture d'équilibre (une des trois phases disparaît)

exemple 3:

$$CaO(s) + CO_2(g) = CaCO_3(s)$$
 $K_1(T)$

$$MgO(s) + CO_2(g) = MgCO_3(s)$$
 $K_2(T)$

2 paramètres d'état intensifs p,T2 relations :

>>>
$$K_1(T) = \frac{p^0}{p_{CO_2}} = \frac{p^0}{p}$$

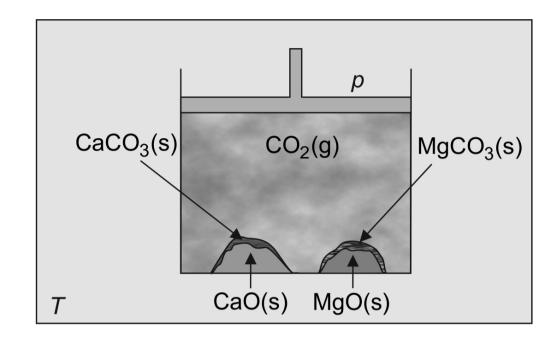
>>>
$$K_2(T) = \frac{p^0}{p_{CO_2}} = \frac{p^0}{p}$$

$$\Rightarrow v = 2 - 2 = 0$$

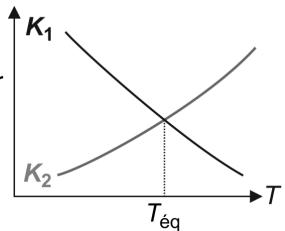
(Gibbs :
$$v = 2 + 5 - 5 - 2 = 0$$
)

remarque : $T_{\text{\'eq}}$ est solution de $K_1(T) = K_2(T)$

si on modifie progressivement p, T ou V, ou qu'on introduit par exemple de plus en plus de $CO_2(g)$, on pourra observer un premier équilibre chimique, puis le deuxième, mais pas les deux en même temps : équilibres *successifs*



on ne peut *rien* imposer car il n'existe qu'un *unique* couple $(p_{\rm \acute{e}q},~T_{\rm \acute{e}q})~$ tel que les cinq phases coexistent



exemple 4 : synthèse de l'ammoniac

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$
 $K(T)$

5 paramètres d'état intensifs $p, T, x_{N_2(g)}, x_{O_2(g)}, x_{NH_3(g)}$ 2 relations :

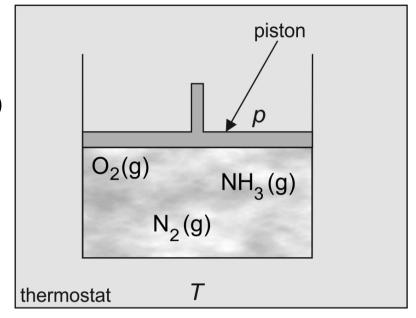
$$>> x_{N_2(g)} + x_{H_2(g)} + x_{NH_3(g)} = 1$$

>>>
$$K(T) = \frac{\left[p_{\text{NH}_3} / p^0 \right]^2}{p_{\text{N}_2} / p^0 \cdot \left[p_{\text{H}_2} / p^0 \right]^3}$$

$$= \left(\frac{p^0}{p} \right)^2 \frac{x_{\text{NH}_3(g)}^2}{x_{\text{N}_2(g)} \cdot x_{\text{H}_2(g)}^3}$$

$$\Rightarrow v = 5 - 2 = 3$$

(Gibbs:
$$v = 2 + 3 - 1 - 1 = 3$$
)



on peut imposer *p*, *T* **et** une des fractions molaires à l'équilibre (en jouant sur les fractions molaires initiales).

lorsque $v \ge 3$, on peut fixer p et T; tous les autres paramètres d'état intensifs à l'équilibre sont fixés dès qu'on se donne un état initial du système

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$
 E.I (mol)
$$a \qquad b \qquad 0$$
 E.E (mol)
$$a - \xi_{\acute{e}g} \qquad b - 3\xi_{\acute{e}g} \qquad 2\xi_{\acute{e}g}$$

le nombre total de moles de gaz à l'équilibre vaut :

$$n_{\text{tg}} = a - \xi_{\text{\'eq}} + b - 3\xi_{\text{\'eq}} + 2\xi_{\text{\'eq}} = a + b - 2\xi_{\text{\'eq}}$$

$$\Rightarrow x_{\text{NH}_3(g)} = \frac{2\xi_{\text{\'eq}}}{a + b - 2\xi_{\text{\'eq}}} \qquad x_{\text{N}_2(g)} = \frac{a - \xi_{\text{\'eq}}}{a + b - 2\xi_{\text{\'eq}}} \qquad x_{\text{H}_2(g)} = \frac{b - 3\xi_{\text{\'eq}}}{a + b - 2\xi_{\text{\'eq}}}$$

$$K(T) = \left(\frac{p^0}{p}\right)^2 \frac{4\xi_{\text{\'eq}}^2(a+b-2\xi_{\text{\'eq}})^2}{(a-\xi_{\text{\'eq}})(b-3\xi_{\text{\'eq}})^3} = \left(\frac{p^0}{p}\right)^2 F(a,b,\xi_{\text{\'eq}}) \qquad \Longrightarrow_{(p,T) \text{ fix\'ees}} F(a,b,\xi_{\text{\'eq}}) = Cte$$

 $\xi_{\text{\'eq}}$ est une fonction *implicite* de a et b : si on se donne un état initial (a et b fixés), $\xi_{\text{\'eq}}$ est fixé et toutes les fractions molaires à l'équilibre sont fixées.

remarque : on ne considère que les paramètres d'états intensifs, et pas les extensifs, car ils suffisent pour décrire le système à l'équilibre, quelle que soit sa taille

exemple :
$$N_2(g) \ + \ 3H_2(g) \ = \ 2NH_3(g)$$
 E.I (mol)
$$a = \lambda n_0 \qquad b = n_0(1-\lambda) \qquad 0$$
 E.E (mol)
$$\lambda n_0 - \xi_{\acute{e}q} \qquad n_0(1-\lambda) - 3\xi_{\acute{e}q} \qquad 2\xi_{\acute{e}q}$$

on pose $\psi = \xi_{\acute{e}q} / n_0$ avancement réduit (sans dimension)

$$\Rightarrow K(T) = \left(\frac{p^0}{p}\right)^2 \frac{4\psi^2 (1 - 2\psi)^2}{(\lambda - \psi)(1 - \lambda - 3\psi)^3} = \left(\frac{p^0}{p}\right)^2 F(\lambda, \psi)$$

 ψ est une fonction *implicite* de p, T et λ : on connaît l'état d'équilibre quelle que soit la taille du système (ici la valeur de n_0)

4.4 Problème du déplacement d'équilibre

réaction
$$0 = \sum_{i} v_i A_i$$
 d'avancement molaire ξ

système initialement à l'équilibre thermodynamique sous certaines conditions de température et de pression, et tous les A_i coexistent

on modifie alors un **seul** paramètre (parmi p, T, le nombre de mol n_i de A_i , le nombre de mol n_ℓ d'un composé inerte), **les autres étant inchangés**

le système, qui n'est plus *a priori* à l'équilibre, évolue vers un nouvel état d'équilibre thermodynamique : *dans quel sens l'équilibre s'est-il déplacé* ?

si v = 0, toute modification de p ou de T provoque une rupture d'équilibre si v = 1, p et T sont liées par une relation f(p,T) = 0 lorsque l'équilibre chimique existe \Rightarrow toute modification de p, sans changer T, ou de T, sans changer p, provoque une rupture d'équilibre

le problème du déplacement sans rupture d'équilibre ne se pose que si $v \ge 2$ dans les autres cas, l'étude permet de savoir dans quel sens se produit la réaction avant la rupture d'équilibre, et donc quels sont les corps qui peuvent disparaître

4.5 Influence de la température

comment varie la constante d'équilibre de la réaction en fonction de T?

$$S = -\left(\frac{\partial G}{\partial T}\right)_{p,\xi} \Rightarrow \Delta_{r}S = \left(\frac{\partial S}{\partial \xi}\right)_{p,T} = -\left(\frac{\partial}{\partial \xi}\left[\frac{\partial G}{\partial T}\right]_{p,\xi}\right)_{p,T} = -\left(\frac{\partial}{\partial T}\left[\frac{\partial G}{\partial \xi}\right]_{p,T}\right)_{p,\xi} = -\left(\frac{\partial\Delta_{r}G}{\partial T}\right)_{p,\xi}$$

$$\Rightarrow \Delta_{r}S^{0} = -\frac{d\Delta_{r}G^{0}}{dT}$$

$$\frac{d}{dT}\left(\frac{\Delta_{r}G^{0}}{T}\right) = -\frac{\Delta_{r}G^{0}}{T^{2}} + \frac{1}{T}\frac{d\Delta_{r}G^{0}}{dT} = -\frac{\Delta_{r}G^{0}}{T^{2}} - \frac{\Delta_{r}S^{0}}{T} = -\frac{\Delta_{r}H^{0}}{T^{2}}$$
$$\Delta_{r}G^{0} = \Delta_{r}H^{0} - T \cdot \Delta_{r}S^{0}$$

or
$$\Delta_r G^0 = -RT \ln K$$
 $\Rightarrow \frac{d\ln(K)}{dT} = \frac{\Delta_r H^0}{RT^2}$ (loi de Van't Hoff)

la relation
$$\frac{d\ln(K)}{dT} = \frac{\Delta_r H^0}{RT^2}$$
 permet de déterminer l'influence de T sur ξ

la pression et la composition étant supposées constantes, si K augmente, l'équilibre est déplacé dans le sens direct (Q étant alors une fonction croissante de ξ)

>>> réaction endothermique :
$$\Delta_r H^0 > 0 \Rightarrow K \nearrow \text{ si } T \nearrow \underset{p=Cte}{\Rightarrow} \xi \nearrow \text{ si } T \nearrow$$
>>> réaction exothermique : $\Delta_r H^0 < 0 \Rightarrow K \searrow \text{ si } T \nearrow \underset{p=Cte}{\Rightarrow} \xi \searrow \text{ si } T \nearrow$

une augmentation de la température déplace l'équilibre dans le sens endothermique

c'est une loi de *modération* : une réaction exothermique a tendance à faire augmenter la température du système ; sous l'effet de cette augmentation, l'avancement diminue, ce qui limite l'énergie dégagée

comme $\Delta_r H^0$ varie faiblement, les conclusions peuvent changer entre deux températures très différentes

4.6 Influence de la pression

$$\left(\frac{\partial \mu_{i}}{\partial \rho}\right)_{T,n_{i}} = \overline{V}_{mi} \Rightarrow \left(\frac{\partial \Delta_{r}G}{\partial \rho}\right)_{T,\xi} = \sum_{i} v_{i}\overline{V}_{mi}$$

$$\Delta_{r}G = \sum_{i} v_{i}\mu_{i}$$

les volumes molaires des phases condensées sont négligeables devant ceux des gaz :

$$\left(\frac{\partial \Delta_{\mathsf{r}} G}{\partial \rho}\right)_{T,\xi} \simeq \sum_{i \mid A_i \text{ gaz}} v_i \overline{V}_{\mathsf{m}i} = \left[\sum_{i \mid A_i \text{ gaz}} v_i\right] \frac{RT}{\rho}$$

systèmes parfaits : $\overline{V}_{mi} = V_{mi} = \frac{RT}{p}$ (gaz parfait)

initialement, équilibre : $\Delta_r G = 0$; p varie de dp > 0

$$\Rightarrow d(\Delta_r G) = \left(\frac{\partial \Delta_r G}{\partial p}\right)_{T,\xi} dp \quad (p \text{ et composition constantes})$$

donc d(
$$\Delta_r G$$
) du signe de $\left[\sum_{i \mid A_i \text{ gaz}} v_i\right] dp$

puis le système évolue à p + dp et T constantes, donc à $d(\Delta_r G) \cdot d\xi < 0$

$$\Rightarrow$$
 réaction dans le sens $\left[\sum_{i \mid A_i \text{ gaz}} v_i\right] d\xi < 0$

>>> si
$$\sum_{i \mid A_i \text{ gaz}} v_i > 0$$
, $p \nearrow$ à $T = Cte \Rightarrow d\xi < 0 \Rightarrow \xi \searrow$
>>> si $\sum_{i \mid A_i \text{ gaz}} v_i < 0$, $p \nearrow$ à $T = Cte \Rightarrow d\xi > 0 \Rightarrow \xi \nearrow$

>>> si
$$\sum_{i \mid A_i \text{ gaz}} v_i < 0, \ p \nearrow \ \text{à} \ T = Cte \Rightarrow d\xi > 0 \Rightarrow \xi \nearrow$$

si $\sum_{i \neq A_i \text{ gaz}} v_i = 0$, la pression n'est pas facteur d'équilibre

comme
$$\sum_{i \mid A_i \text{ gaz}} v_i = \sum_{k \mid P_k \text{ gaz}} v_k - \sum_{j \mid R_j \text{ gaz}} v'_j :$$
produits
$$\underbrace{j \mid R_j \text{ gaz}}_{\text{réactifs}}$$

une *augmentation* de pression, à *T* et composition constantes, provoque un déplacement d'équilibre dans le sens de la *diminution* du nombre de mol de gaz (*loi de Le Chatelier*)

c'est encore une loi de *modération* : une augmentation de pression entraîne une diminution du nombre de mol de gaz, ce qui a tendance à faire diminuer la pression du système

exemples:

C(s) +
$$\frac{1}{2}$$
O₂(g) = CO(g)
$$\sum_{i / A_i \text{ gaz}} v_i = 1 - \frac{1}{2} = \frac{1}{2} > 0 \qquad (v = 2)$$

une augmentation de pression déplace l'équilibre dans le sens indirect

$$C(s) + O_2(g) = CO_2(g)$$

$$\sum_{i \mid A_i \text{ gaz}} v_i = 1 - 1 = 0 \quad (v = 1)$$

la pression n'est pas facteur d'équilibre, elle ne compte pas parmi les paramètres d'état intensifs qui influent sur le système (on peut fixer T et p)

$$CO(g) + \frac{1}{2}O_2(g) = CO_2(g)$$

$$\sum_{i \mid A_i \text{ gaz}} v_i = 1 - 1 - \frac{1}{2} = -\frac{1}{2} < 0 \qquad (v = 3)$$

une augmentation de pression déplace l'équilibre dans le sens direct

4.7 Influence de l'introduction d'un composé

initialement tous les A_i coexistent on ajoute un réactif, un produit, ou un composé inerte, à pression, température, et autres quantités de matière constantes \Rightarrow déplacement d'équilibre ?

quelques résultats :

>>> l'introduction d'un réactif, produit, ou composé inerte, pur dans sa phase **condensée**, n'a aucune influence sur l'équilibre, car son activité vaut 1

>>> l'introduction d'un réactif soluté (sans dilution) déplace l'équilibre dans le sens de sa consommation (loi de modération)

>>> l'introduction d'un composé *inerte* gazeux déplace l'équilibre dans le sens de l'augmentation du nombre de mol de gaz

démo:

seul le nombre de mol de gaz n_{tg} varie à (p,T) constantes si on rajoute dn > 0 mol de composé inerte gazeux : $n_{tg} \rightarrow n_{tg} + dn$

le quotient de réaction s'écrit :

$$Q = \underbrace{\alpha}_{\text{composés non gazeux}} \cdot \prod_{i \mid A_i \text{ gaz}} \left(\frac{p_i}{p^0} \right)^{v_i} = \alpha \cdot \prod_{i \mid A_i \text{ gaz}} \left(\frac{n_i p}{n_{tg} p^0} \right)^{v_i} = \beta \cdot n_{tg}^{-\sum_{i \mid A_i \text{ gaz}} v_i}$$

$$= \alpha \cdot \prod_{i \mid A_i \text{ gaz}} \left(\frac{n_i p}{n_{tg} p^0} \right)^{v_i} = \beta \cdot n_{tg}^{-\sum_{i \mid A_i \text{ gaz}} v_i}$$

$$= \beta \cdot n_{tg}^{-\sum_{i \mid A_i \text{ gaz}} v_i}$$

$$= \alpha \cdot \prod_{i \mid A_i \text{ gaz}} \left(\frac{n_i p}{n_{tg} p^0} \right)^{v_i} = \beta \cdot n_{tg}^{-\sum_{i \mid A_i \text{ gaz}} v_i}$$

initialement, Q = K(T), puis Q varie dans le sens opposé à $\sum_{i \neq A_i} v_i$

$$\sum_{i \mid A_i \text{ gaz}} v_i > 0 \Rightarrow Q \searrow \Rightarrow Q' < K(T) \text{ après introduction du composé} \Rightarrow \xi \nearrow$$

on a bien déplacement dans le sens de l'augmentation du nombre de mol de gaz

>>> pas de résultat général pour l'introduction d'un réactif gazeux : deux effets peuvent s'opposer : consommation de ce réactif (loi de modération : déplacement dans le sens

direct), et l'effet précédent si
$$\sum_{i \mid A_i \text{ gaz}} v_i < 0$$
 (déplacement dans le sens inverse)

de façon générale, on tire le sens du déplacement de la loi d'évolution $\Delta_r G \cdot d\xi < 0$ en calculant numériquement $\Delta_r G$ après introduction d'un composé

4.8 Optimisation d'un rendement

exemple : synthèse de NH₃(g)

on introduit n_0 mol en tout de $N_2(g)$ et $H_2(g)$ et on cherche à obtenir le plus possible de $NH_3(g)$: $\psi = \xi_{\acute{e}a} / n_0$ maximal, en jouant sur la composition initiale (coefficient λ):

$$\begin{split} N_2(g) &+ 3 H_2(g) &= 2 N H_3(g) \\ &\stackrel{\text{E.I (mol)}}{=} \lambda n_0 & n_0 (1-\lambda) & 0 \\ &\stackrel{\text{E.E (mol)}}{=} \lambda n_0 - \xi_{\acute{e}q} & n_0 (1-\lambda) - 3 \xi_{\acute{e}q} & 2 \xi_{\acute{e}q} \\ \mathcal{K}(T) &= \left(\frac{\rho^0}{\rho}\right)^2 \frac{4 \psi^2 (1-2 \psi)^2}{(\lambda-\psi)(1-\lambda-3\psi)^3} = \left(\frac{\rho^0}{\rho}\right)^2 F(\lambda,\psi) \Rightarrow F(\lambda,\psi) = Cte \ \grave{a} \ (\rho,T) \ \text{fixées} \\ &\Rightarrow dF = \frac{\partial F}{\partial \lambda} d\lambda + \frac{\partial F}{\partial \psi} d\psi = 0 \ , \ \text{soit} \ \frac{\partial F}{\partial \lambda} + \frac{\partial F}{\partial \psi} \frac{d\psi}{d\lambda} = 0 \\ &\text{on cherche } \lambda_0 \ \text{tel que } \psi \ \text{soit maximale} : \ \frac{d\psi}{d\lambda}(\lambda_0) = 0 \\ &\Rightarrow \frac{\partial F}{\partial \lambda}(\lambda_0,\psi_{\text{max}}) = 0 \Rightarrow \ \frac{\partial \text{In}(F)}{\partial \lambda}(\lambda_0,\psi_{\text{max}}) = \frac{1}{F} \frac{\partial F}{\partial \lambda}(\lambda_0,\psi_{\text{max}}) = 0 \end{split}$$

$$F(\lambda, \psi) = \frac{4\psi^{2}(1-2\psi)^{2}}{(\lambda-\psi)(1-\lambda-3\psi)^{3}} \Rightarrow \ln(F) = \underbrace{Cte}_{\text{ne dépend de }\psi} - \ln(\lambda-\psi) - 3\ln(1-\lambda-3\psi)$$
$$\frac{\partial \ln(F)}{\partial \lambda}(\lambda_{0}, \psi_{\text{max}}) = -\frac{1}{\lambda_{0} - \psi_{\text{max}}} + \frac{3}{1-\lambda_{0} - 3\psi_{\text{max}}} = 0$$

$$\Leftrightarrow 3\lambda_0 - 3\psi_{max} = 1 - \lambda_0 - 3\psi_{max} \Leftrightarrow \lambda_0 = 1/4$$

$$N_2(g) + 3H_2(g) = 2NH_3(g)$$

E.I (mol)
$$n_0/4 \qquad 3n_0/4 \qquad 0$$

l'avancement est maximal pour un *mélange stœchiométrique*