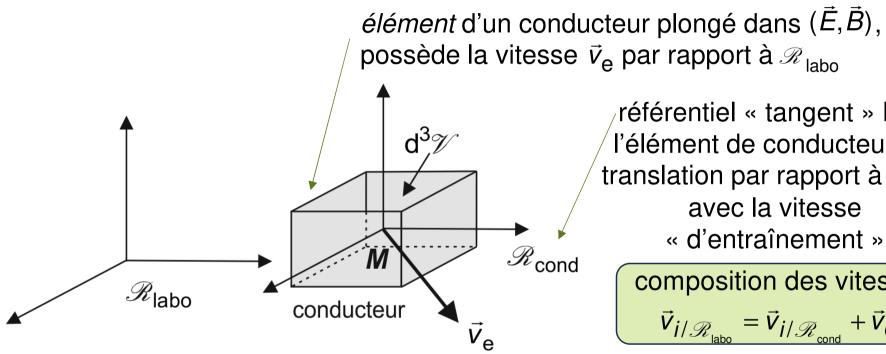


3. FORCE DE LAPLACE SUR UN CONDUCTEUR

3.1 Force de Laplace volumique

soit un conducteur en mouvement quelconque par rapport à \mathcal{R}_{labo} (peut se déformer)



référentiel « tangent » lié à l'élément de conducteur, en translation par rapport à \mathcal{R}_{labo} avec la vitesse « d'entraînement » \vec{v}_e

composition des vitesses :

$$\vec{v}_{i/\mathscr{R}_{labo}} = \vec{v}_{i/\mathscr{R}_{cond}} + \vec{v}_{e}$$

>>> charges *fixes* du conducteur (exemple : cations) : densité de charge ρ_f , vitesse nulle / \mathcal{R}_{cond} et vitesse $\vec{v}_f = \vec{v}_e / \mathcal{R}_{labo}$

>>> charges *mobiles* du conducteur (exemple : électrons libres) : densité de charge ρ_m , vitesse \vec{V} / \mathcal{R}_{cond} et vitesse $\vec{V}_{m} = \vec{V} + \vec{V}_{e}$ / \mathcal{R}_{labo}

une charge donnée "i" (fixe ou mobile) est soumise à la force de Lorentz :

$$\vec{F}_i = q_i(\vec{E} + \vec{v}_i \wedge \vec{B})$$

⇒ l'élément de conducteur est soumis à la **résultante** de ces forces :

$$d^{3}\vec{F}_{L} = d^{3}\mathscr{V}$$
 force de **Laplace**
$$\underbrace{\rho_{m}(\vec{E} + \vec{v}_{m} \wedge \vec{B}) + \rho_{f}(\vec{E} + \vec{v}_{f} \wedge \vec{B})}_{\text{charges mobiles}} + \underbrace{\rho_{f}(\vec{E} + \vec{v}_{f} \wedge \vec{B})}_{\text{charges fixes}}_{\vec{V}_{m} = \vec{V} + \vec{V}_{e}} + \underbrace{\rho_{f}(\vec{E} + \vec{v}_{f} \wedge \vec{B})}_{\text{charges fixes}}$$

en régime stationnaire, la densité volumique de charges du conducteur est nulle :

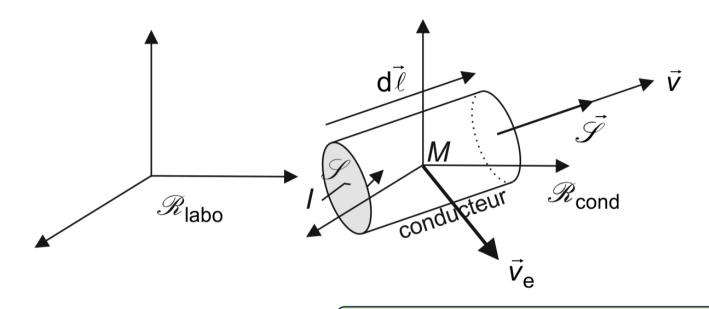
$$\rho = \rho_{\rm m} + \rho_{\rm f} = 0$$

(en réalité, elle ne l'est plus tout à fait, car on n'a plus rigoureusement $\vec{J} = \gamma \vec{E}$ en présence du champ magnétique, mais les écarts à la neutralité sont insignifiants).

$$\Rightarrow \mathsf{d}^3 \vec{F}_L = \mathsf{d}^3 \mathscr{V} \left[\underbrace{(\rho_\mathsf{m} + \rho_\mathsf{f})}_0 (\vec{E} + \vec{v}_\mathsf{e} \wedge \vec{B}) + \rho_\mathsf{m} \vec{v} \wedge \vec{B} \right] \text{ or } \vec{J} = \rho_\mathsf{m} \vec{v} \text{ densité volumique de courants dans } \mathscr{R}_\mathsf{cond}$$

 \Rightarrow force de Laplace par unité de volume, que subit un conducteur plongé dans un champ magnétique : $\frac{d^3\vec{F}_L}{d^3 \mathscr{V}} = \vec{J} \wedge \vec{B}$

3.2 Force de Laplace sur un conducteur filiforme



I, $\vec{\mathscr{S}}$ et $d\vec{\ell}$ sont orientés dans le même sens

 $\vec{J} = \rho_{\rm m} \vec{v}$ est uniforme sur une section $\Rightarrow I = \vec{J} \cdot \vec{\mathscr{S}}$ dans $\mathscr{R}_{\rm cond}$

force de Laplace sur un élément de conducteur filiforme :

$$d\vec{F}_{L} = I d\vec{\ell} \wedge \vec{B}$$