5. PROPAGATION NON DISPERSIVE LE LONG
D’UN CABLE COAXIAL

5.1 Lecablecoaxial @ = tresse A

tresse isolant isolant

j ame
J o.._ ame . x
gaine
conducteurs
(cuivre)

le cable constitue un guide d'onde (cf. ondes AR
électromagnétiques dans le vide) : 'onde gaine
électromagnétique se propage selon Ox, dans le
diélectrique, par réflexions successives sur 'ame et
la tresse

matériau diélectrique
(isolant), par exemple du
polyéthylene de permittivité

3 plusieurs modes de propagation (ondes relative e, = 2,25

électromagnétiques solutions de I'équation d’onde
dans le diélectrique, et vérifiant les C.A.L imposées

par la présence des conducteurs)
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pour des fréquences suffisamment faibles, il n’existe qu’'un mode pour lequel un
élément de cable de longueur dx est équivalent au circuit ci-dessous :

/ i) Lieoe i(x +dx.t) \

B
A
u(x,t) dx —__ u(x +dx,t)
dx >
A= % (H- m'1) inductance linéique du cable
dC

\ = (F-m™) capacité linéique du cable /
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5.2 Equations de couplage et équation d’onde

loi des noeuds : i(x,t) =i(x+dx,t)+ Fdxa—u(x+dx, f) = I = —F%
e ot ) 0X ot
. / v
I(X’t)+8xdx Fdxau(x,t) a l'ordre 1 en dx
ot
loi des mailles : u(x,t) =u(x+dx,t) +Adxﬂ(x, ) = du = —Aﬂ
e ot 0X ot
u(x,t)+2Y dx
oX
4 (i )
relations de couplage : { % t
ou o]
T =—AT (2)
\_ L dX ot Y,
découplage :
2 2. 2. 2 2 2
@_A8(1) U 8/:_A8/+AF8 u(:)c") U:AFQ
X dt  gx°  oxot Jxot M Ix? ot°
2. 2 2 2. 2. 2.
o) _po@) _ 0% po%u _ 0% 0% 0% 0%
oX ot Jx°  oxot oxot M2 ox? 92
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s(x,t) = u(x,t) ou i(x,t) vérifie pour le mode étudié :
2 2
0 g = 12 ¢ 28 avec C = U équation de d’Alembert 1D
S %), 4 c< ot VAT y

c : célérité des ondes électromagnétiques

dans le vide : ¢y =1/ [egug =3,00-108 m-s™

dans un diélectrique, gy — &g : ¢ =1/[e,ggltg = Co / f&; =2,00-10% m s

(pour g, =2,25)
5.3 Impédance caracteristique du cable

on cherche une solution d’'onde plane progressive (O.P.P) se propageant le long
du cable dans le sens des x croissants :

u(x,t)=F,(t—x/c)
i(x,t)=F(t—x/c)

F,, et F; sont des fonctions de la seule variable 8(x,t)=t—-x/c

4



LIRS
(0] _dF 06 _ 1dF
o(x.t)=t—x/c :><8x dé6 ox ¢ do
ou _ df, 06 _ dF,
Lot  do oJt do
. i ou ., . _
la relation de couplage (1) — =-1"— s'écrit donc :
0X ot
_1dh F£:>Fu:il-',-+0te, soit u=Z, - i+ Cte
c do doe I'c

on peut avoir Cte # 0 en imposant une tension constante entre la tresse et 'ame
alors que le cable ne débite aucun courant

on peut alors étudier a part le régime stationnaire et le régime ondulatoire, puis les
ajouter, car les équations sont linéaires (théoreme de superposition)

on n’étudie ici que des solutions ondulatoires, de valeur moyenne nulle, pour
lesquelles : -

u=Z, -i pour une O.P.P qui se propage dans le sens des x //

— \/% impédance caractéristique du cable (Q)

C~— .
" I'c Y,
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u(x,t)=G,(t+x/c)
i(x,t)=G;(t+x/c)

pour une O.P.P x \y :{ ¢=1t+x/c=0(xt)

(di  dG; 09 _ 1d_G,-

_Jox de ox cde (qy. 9 p0U ey 146G dG, 1g
ou dG, 99 _ dG, X ot c do do ‘Tc
ot do ot do (solution ondulatoire)

[pouruneO.P.Px\,:u:— o }

5.4 Réflexion en bout de lignhe, cas d’une charge résistive
la solution la plus générale correspond a la somme :
u(x,t)=F,(t—x/c)=2Z.F(t-x/c)

d'une O.P.P x /" (incidente) : <
i(x,t)y=F(t—x/c)

u(x,t)=G,(t+x/c)=-Z.G;(t+x/c)

d'une O.P.P x "\ (réfléchie) :
i(x,t)=G;(t+x/c)
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u(x,t) = Z,F; (t— x/¢)— Z.G; (t + x/ ¢)
—
ix,t)y=F(t-x/c)+G;(t+x/c)

cette onde vérifie les équations locales du probleme (les 2 relations de couplage)

u(—L,t) _ 0
: —X
> i(0,t)
—__ ) >
50 Q) cable coaxial 4
et)l(D uo,) | | |2
G.B.F | | » | charge
TN AR / TSI
il reste a vérifierla C.A.Len x=0: u(0,t)=Z-i(0,t) Vt
= Z: [ Fi(t) - Gi(t)] = Z[ Fi(t) + Gi(1)]
4 _ . I
=P = Glh) _ £ =2 coefficient de réeflexion en intensité
Fi(t) Z.+Z
P, = Gy (1) = £eGill) =—p; = Z=2 coefficient de réflexion en tension
. FR(t)  ZF(1) ct< . /
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étude expérimentale : le G.B.F, placé en
entrée x =0 du cable, délivre un peigne
d'impulsions et on observe u(-L,t) en entrée

du cable a l'oscilloscope >t
— >
trois cas particuliers de résistance de charge :

(1) Z:O:}pu:—1 inC. _’E
(sortie court-circuitée : u(0,t)=0 Vt, noeud de tension) H H H H
' >

on en déduit ¢ = 2L / At H H H H

réfl.
(2) Z=oo=>p,, = +1
(sortie ouverte : i(0,t) =0 Vt,nceud de courant) u(-L,t)
: n Al
inc. refl. =,

LU,




RN
(3) £=2, =p,=p; =0 U(;i’t) At
: —>

A

pas d’'onde réfléchie (méme relation u(0,f) = Z_ i(0,f) que pour une O.P.P qui se
propage dans le sens des x croissants le long d’un cable infini)

I'O.P.P incidente seule est solution du probleme (elle vérifie les relations de
couplage et la C.A.L)

g pour Z = Z,, pas d'onde réfléchie : p, =p; =0 h

on parle alors d’adaptation d’impédance : toute la puissance incidente est
\ transmise a la charge y

en pratique, les G.B.F possedent une résistance interne de 50 Q
utilisés avec un cable coaxial d'impédance caractéristique 50 Q, on évite que les
ondes que transmet le cable ne se réfléchissent sur le G.B.F et on élimine ainsi

des réflexions parasites.
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cas général : —1<p,, = € <1
Y Z+Z

prenons une onde incidente harmonique de pulsation o, la résultante des ondes de
tension incidente et réfléchie est :

u(x,t) = ug | cos(mt — kx)+p,, cos(mt + kx) | avec up =0 : interférences
FOxl) 9(x.t)

fetgenphaseenx Vi ot—-kx=ot+kx+2nmm o kx=-nn < X=X, =—-n\/2
ne N

alors u(xp,,t) = up[cos(ot + nr) +p, cos(ot — nr)| = ug(-1)"[1+ p,]cos(ot)

f et g en opposition de phase en x Vit © ot —kx=of+ kx+(2m+1)n

o kx=—2m+Wn/2< X=Xy, =-(2m+1)A/4 avec me N

alors u(X,t) = tg(-1)"[1-p,]sin(wt)
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prenons p, <0

= interférences constructives pour x=—(2m+1)A/4 et |u| __ =ug[1-p,]

= interférences destructives pour x = x, =-n\/2 et |u_. =ug[1+p,]

u
A—
Uo pu =0
1..

LIS X KPS
XX X
3 AR AR PLINTRERS
o K B KR
e, Jeh ittt e ety e 0, (AKX XAEXD
1 g AR RALAR LR R
0,5 T ! % '0:0:0’.\‘-*3-'.'.'.'
’,

ey .0 OO X
.‘.O'O'o’t'o‘c%’ OIS
RASKIRANONS
XXX -33.0.0“0.0’

0
SRR
0
KRR
PR

%

" IS ABRAENK XN !
K RIS RN AR
Rttt 0‘0‘0‘0. PR NXNN, .0’0. ot a%e%s et telelr
SN “%’0’0:0:':'::‘:‘::: N :"‘.“:‘:‘:o:o‘o’. :%.0:0:'.'0'8"-’0"‘0
KOS I G ALA KL ORI
““.c:,:,o.: CNIAALAR2 &2 “‘:‘:’:0:0::.::"’
&

reaetetales

L A RIS
SRR RIIRRMEIAIEL
2055 % SRR 3R

2
LR
e 207
SRS Mol
e
\;ts‘:¢’o 5

py=-05 py =-07 py=-1

Les ondes planes harmoniques ne sont purement progressives que si p, = 0. Elles restent progressives
lorsque —1 < p, < 0, mais il apparait des « nceuds » d’amplitude minimale (mais non nulle), et des ventres

d’amplitude maximale. Pour p,=-1, 'onde est stationnaire : son 'amplitude est nulle aux nceuds.
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amplitude minimale mais non nulle ; 'onde dans le cable
n’est pas purement progressive, ni stationnaire

pourp,=-12=0

les interférences a deux ondes de méme amplitude
produisent des nceuds et des ventres; 'onde dans le
cable est stationnaire
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