1. DISPERSION / ATTENUATION

1.1 Technique de résolution

si on prend en compte des frottements linéaires dans I'équation la corde vibrante , on
obtient :

82\41 1 82\p 10y
= +__
x> ¢%ot> v ot

= y(xt)# F(t-x/c)+G(t+x/c)

équation d’onde linéaire, mais # d’Alembert

le terme F(t- x/ ¢) correspond a une onde se propageant a la célérité ¢ dans le sens
des x croissants, sans déeformation, alors que la présence de forces de frottement va
attenuer 'onde lors de sa propagation

cependant, ’équation restant linéaire, on peut rechercher des solutions sinusoidales
dans le temps, et utiliser la notation complexe :

w(x,t) = f(x)e'® avec fe C
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= f(x) régie par une équation différentielle linéaire a coefficients complexes

= les solutions de cette équation se décomposent sur une base de
fonctions qu’on cherche sous la forme e avec rcomplexe, ou, ce qui est
équivalent, sous la forme : x — e ™ avec ke C

(t—kx)

= y(x,t) = yye’ prend la forme d'une O.P.P.H

/plus généralement, on peut chercher des solutions : \

— d’une équation d’'onde linéaire régissant une grandeur s(x,)
— d’'un systeme d’'equations linéaires couplant des grandeurs [s;(x,1), S,(x,1), ...]

sous la forme s(x,t) = spe'{®t=*) oy [ﬁ = A/ RN g, = Aze"(‘”t_kx),..}

avec we R* et ke C : k(o) = K (o) + ik'(®) , (K,k")e R?

la relation qu’on obtient entre k et w est appelée relation de dispersion
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si k"0 s(x,t) = sye” Xgl(01=KX) - 'onde est atténuée ou amplifiée lors de sa propagation

si K" =0 I'onde est stationnaire et ne se propage pas, sinon c'est bien une O.P.P.H
a B (oot P )
forme intrinseque : s(r,t) = soe’(‘” ") avec k(w =K' (®) + ik (w)] €

g vecteur unitaire dans la direction de propagation/

. ~ ~ ~ = i(®
Si K =kyey +k,€, +K,€, = S(I,t)=5p€ (

t—-k-T) _ Soe/(oot—kxx—kyy—kzz)

= les opérateurs sont simplifiés :
{83 s 2S-_iks 5. ~ik, s 98 _ _ik,s }

ot X dy 9z
2 2 2
laplacien A§:8‘2§+a§ 0°s _ [k +k, 21k, J s=-k’s= AA=-K°A
ox= dy 92°
{As:—kzg]
. . 0A, 9JA, 0A,
divergence divA= 5 5y o —/[k A +ky&+kziJ
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rotationnel rot A= @ A & =—I| K, |A ﬂ
o | A Kz2) A
0Z
/pour une O.P.P.H : A(F,t) = /Z\Oei(mt_R'F) qui se propage selon k, on a :
0A . - s s T ~ 5~
—=ImA divA=-ik-A rot A=—IknA AA=-k“A
\ ol )

1.2 Vitesse de phase

o définitions pour O.P.P.H x /* sans atténuation, on a k = ké,, avec ke R

— §(X, t) — SOeI(O)t—kX)

[ ¢ =wt—k-T = ot—kx est appelée phase de I'onde]
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si t varie de dt et x de dx, ¢ varie de do = wdt — kdx

méme phase en x+dx a t+dtf qu'en x a t<:>d(p:0<:>(;—);=%

:>%) est la vitesse de propagation de la phase ;[v :%) est la vitesse de phase ]

¢

milieu NON dispersif : éqg. d'onde de d'Alembert = k = % S Ve = % =C VO

toutes les composantes sinusoidales de la perturbation se propagent a la méme vitesse

é milieu DISPERSIF = v, dépend de w = k(w) = y (z) : A
®

¢

la relation de dispersion n’est plus linéaire
les composantes sinusoidales d’'une O.P.P se propagent a des vitesses différentes,
\ce qui entraine la déformation de la perturbation lors de sa propagation -




RN

e dispersion dans un milieu transparent (non absorbant)

pour les O.P.P.H électromagnétiques dans un milieu transparent, on définit I'indice
de réfraction n de ce milieu par :

[ Vo = ®_%  n>1dans le domaine de I'optique]
k n

comme ndépend de o (ou de la longueur d’'onde A dans le vide), on a dispersion :
les difféerentes composantes sinusoidales du signal ne se propagent pas a la méme
vitesse

phénomene observé quand un prisme sépare les différentes couleurs d’un faisceau
de lumiere blanche incident




AN
les milieux transparents diélectriques sont également caractérisés par €, permittivité
relative, qui dépend de o

par rapport au vide :[eo — g, er]

c A Vo € A Anmiliew n
4
. E?2 . (. nE?
Spyide =——©€x =S, =— €
Pvide UoC X \Sp loC )J
quelques valeurs de na 15°C
air sec n=1,000277 =1
eau n=1333=4/3
verre « crown » n=1650
(classique)
verre « flint » n=1520=15

diamant n=2,415
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e propagation sans atténuation d’une O.P.P quelconque dans un milieu dispersif

+o0 _ oo _
s(x=0,t) = F(t) =2in J' F(w)e'®do = lRe[ J' F(m)e’“’tdm] puisque s(x,t)e R
oo 0

o — F(o) est la transformée de Fourier de t — s(x =0,t) = F(t)
~ +o .
Flw)= | F(t)e™"'dt

milieu linéaire = pour déterminer le signal s(x # 0,1) il faut sommer toutes les
composantes sinusoidales en x a l'instant ¢

une telle composante s’est propagée a la vitesse de phase V() = ——

k()

F(w)e’® en x=0 — Fw)el® @)X gn 20

:{s(x,t)z1 Ool:'(w)ei[mt_k(m)x]dm:1Re[ joo /f(m)e"[“’”‘(‘”)x]de
0
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0)0 :(DO \
k(wg) ko

est une composante mathématique du signal ; son spectre est une raie infiniment fine
— pas de réalité physique, puisqu’elle correspond a une onde purement sinusoidale,

io,t

la composante I:'((oo)e , qQui se propage a la vitesse de phase Vo =

\sans début ni fin. Y,
s(x =0,t
(X A ) To = 2_7: spectre
(DO A

>

/\MMMMH

‘ .......... ’
. >
Al = 400 ~

O.P.PH

dans le domaine des ondes électromagnétiques, on peut donc avoir v_ > ¢, vitesse

- . ¢
de la lumiere dans le vide
une O.P.P.H ne transportant ni énergie, ni information, ne va pas a I'’encontre de la

théorie de la relativité d’Einstein
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1.3 Vitesse de groupe

e premiere approche, somme de deux O.P.P.H

Sy et s, deux O.P.P.H de méme amplitude Sy et de pulsations proches wp £ dw/ 2
avec om << wy

propagation dans un milieu dispersif linéaire :

k((oo i%‘”j - k(mo)i%“’-%(m@) = K, _5—2" (D.L & l'ordre 1)

= S(x,t) = Sy cos|(wg —dw/ 2)t — (kg — 8k / 2)x]+ Sy cos|(wy + dw/ 2)t — (kg + Ok / 2) x|

/

' v

S,(x,1) S, (Xx,1)
=25y cos|wgt — kg x|cos[dm-t/2 -8k x/2]

on a des battements :
t > cos|mgt — kgx| de période Ty =2n/ @y est modulée par :
t— 2Sycos[dw-t/2—-3k- x/2], enveloppe de période T =21/dw>> T,
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Ces battements s’expliquent par les interferences entre s, et s, :

— interférences constructives aux instants pour lesquels, en x donné, s, et
S, quasiment en phase = l'enveloppe a un maximum d’amplitude

— interférences destructives aux instants pour lesquels s, et s, sont quasiment en

opposition de phase = I'enveloppe s’annule

s(x,t) =25y cos[dw-t/2—8k- x/2]-cos|[wgt— kox]

|

"O.P.P.H", se propage a v, = %0
Ko
enveloppe, se propage a Vg = g—z) = 1/3—5)(@0) = 3—(/?(/(0)

« vitesse de groupe » car c’est la vitesse des crétes du signal, lieu des
interférences constructives des différentes O.P.P.H constituant le signal
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Battements par sommation de deux O.P.P.H de pulsations trés proches et de méme amplitude.

remarque : avec deux O.P.P.H, 'onde résultante, qui n’a toujours ni début ni fin,

n’est pas physiquement réalisable



Psia.2l
=

e deuxieme approche, somme continue d’O.P.P.H

si on somme un continuum d’O.P.P.H de pulsations tres proches de ®,, ces ondes
de la forme a(w)cos|wt — k(m)x+ o(m)] , avec a(w) >0 interférent constructivement
en x a la date tsi leur phase :

o(x,t,0) = of — k(0)x + ¢(w) est identique, égale a nw, ne N, au voisinage de

!

d(w) phase desondesen x=0a =0
o(x, t,m) = ot — k(0) X + o(w) = Cte Voo = %(m()) = t—%(m())x+@(wo) =0
dw do do
dk

_,, do _dx do
do\ 0V (@)= Vg = 01 = 4k

—

(ko)

remarque : si @ = nt +n/ 2, les interférences sont destructives et leur somme est
nulle, mais le lieu de ces interférences se propage toujours avec Yy tout comme les
autres points de I'enveloppe de I'O.P.P.H de pulsation w,, caractérisés par une
phase constante quelconque donc une amplitude constante

la vitesse de groupe est la vitesse de I'enveloppe du signal (la ou la phase
des ondes de pulsation tres proche de o, est constante).

paquet d’onde étroit 13



N
e troisieme approche, expression temporelle d’un paquet d’onde étroit

paquet d’ondes étroit (ou train d’'ondes) : le spectre possede une largeur Aw
tres petite autour de w,, mais non nulle (signal réalisable physiquement)

spectre
;o_2n  ps(x=0t) P
0™ on A®
e
Fo |-
At fini R s
paquet d’'ondes trés étroit "\

pour simplifier les calculs :
paquet d’ondes dont le spectre
est un rectangle

pour me [m() —%D,(oo +A?m} :D.Lal'ordre 1 enn=w-wy de o — k()
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dk
k(o) = k(g ) +(0—0p)——(ag) =Ky +1n——
(@) = k(ag) +(0=0g) | (09) =Ko+ ()
00+A—CO dk
. b o i{mt—(koﬂm—mo)(wo) X
s(x,t):1Re[I F(w)e’[mt‘k(‘”)x]d] "0 Re | e w0
T 5 T Ao
° 2
F i[o,t—k, x] 2 m{t_dk( o) }
s(x,t)=-9.Re| g% Ie do dn n=0-0g
. _Aw
2
_ FOA(DRe(ei[O)Ot_kOX])-SinC A_‘D(t_%(mo)xj
T 2 dow

fonction sinus cardinal

sinc( X) = S'r)‘(x

15
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. FA® .
finalement : s(x,t) =Y Psinc A—w(z‘—%(ooo)xj -cos(wpt — kg X)
oo 2 do
FAw .
= U wsmc[m[t—xﬂ - cos(wgt — Kyx)
T 2 Vq . - ’
v > O.P.P.H, célérité v ="
o dw "k
enveloppe, célérité v_.=——(k,) 0
° dk
4 )

Vg = 3_23 vitesse de groupe : vitesse a laquelle se déplace I'enveloppe

du paquet d’'ondes de faible largeur spectrale autour de wj,
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V,aunsens physique car I'enveloppe transporte de l'information

pour une onde électromagnétique Vy<¢C célérité de la lumiere dans le vide

analogie avec la modulation d’'amplitude : la « porteuse » ne véhicule aucune
information, contrairement au signal modulant qui enveloppe la porteuse

si la largeur spectrale n’est plus tres petite, dispersion = déformation du paquet d’'ondes

t=0 t= At t=2At

. .HHHIL _.'.,.‘.HHHHIM._ .
i

~Hyi

ici les composantes de plus grandes fréquences se propagent plus vite
que celles dont les fréquences sont les plus faibles : il y a étalement d’'un

paquet d’ondes lors de sa propagation
17
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1.4 Aspect énergetique

2
D(x,1)= A-s2(x,1) = A(FOA(Dj sinc? [AZ“’[t—Xﬂ .cos?(wgt — koX)

T Vg

enveloppe, reste constante
sur une durée T,

grandeur énergétique (énergie volumique, vecteur densité volumique de courants
d’énergie pour une O.P.P), fonction quadratique du signal

Al FpAoe . ol Aol x
>¢>n (x,t)=§( On j smcz{z[t—vgﬂ

2T
moyenne sur To =—

Q)

{en I'absence d’absorption, I'énergie moyenne est transportée par I'enveloppe, et}

se propage donc a la vitesse de groupe : ¢, = Vy




1.5 Atténuation
¢ les différentes causes

O.P.P:s(xt)= soei(‘”t_kx), avec me R™, solution de I'équation de propagation

dans le milieu linéaire = k(w) = k'(0) + ik"(w), avec (kK',K") e R?

premier cas :onde x ./ : kK'(w)>0 et K'(o)= 1 <0

o(w)

o)t—k’x+ixj X

i X ,
= s(x,t) = sy€ ( = 59€ 69’(‘0"“) 'onde s’atténue lors de sa propagation

le milieu est absorbant
(ondes électromagnétiques dans un conducteur)

-----
L
we®
.

0 (qui dépend de o) : épaisseur de peau

19

s(x,t) a tfixe



Ui
deuxieme cas : onde stationnaire : kK'(0) =0 et k"(®) = —ﬁ <0
®
i((ot+ij X
= s(x,t) = §pe °) = sye S

X
= s(x,1) = spe 9 cos(mt)

milieu non absorbant, mais pour certains o, 'onde s’atténue car c’est une somme
d’ondes rayonnées par les particules du milieu qui interferent destructivement
(ondes électromagnétiques dans un plasma)

A

Onde stationnaire amortie spatialement.

20
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X
sionde x /" 1 K(0)>0 et K'(0)= LI = s(x,1) = Soesei(ﬂ)f—k'x)

o(0)
onde amplifiée lors de sa propagation, par exemple : milieu actif d’'une cavité laser

le pompage (apport d’énergie extérieur) permet d'obtenir des désexcitations stimulées
qui amplifient 'onde électromagnétique lors de sa propagation

e vitesse de phase
X

onde atténuée : prenons s(x,t) = spe 5 gl(01=KX)

propagation si k' # 0 = v,, :%

+oo ] ,

s(x, 1) =1Re[ J I:_(co)ek ((o)xel[(ot—k (w)x]de

s
0 U

s(x,t) # F()Amsinc{m{t—xﬂ . cos(mgt —Kkyx)

T 2 Vg N g y

v > O.P.P.H, célérité v,="0
k

enveloppe, célérité v, =(‘j'k"°,(k; ) °

21
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la vitesse de groupe ainsi définie n’a plus de sens physique lorsque I'onde est
atténuée, et :
dw

Ci| #
U™ ak

(ko)

/pour calculer la vitesse ¢, de propagation de I'énergie moyenne, on effectue des )
bilans :
(Jac)

U {uae)” Y,

|

N Y (u)

m:

22



