
1. DISPERSION / ATTÉNUATION
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1.1 Technique de résolution
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tx c t

∂ ψ ∂ ψ
= +

∂

∂ψ

ν ∂∂

si on prend en compte des frottements linéaires dans l’équation la corde vibrante , on 
obtient :

équation d’onde linéaire, mais ≠ d’Alembert

( ) ( )( , ) / /x t F t x c G t x c ψ − + +≠

le terme F(t - x / c) correspond à une onde se propageant à la célérité c dans le sens

des x croissants, sans déformation, alors que la présence de forces de frottement va

atténuer l’onde lors de sa propagation

cependant, l’équation restant linéaire, on peut rechercher des solutions sinusoïdales 

dans le temps, et utiliser la notation complexe :

( , ) ( )  avec i tx t f x e fωψ = ∈C
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 f(x) régie par une équation différentielle linéaire à coefficients complexes

 les solutions de cette équation se décomposent sur une base de 

fonctions qu’on cherche sous la forme erx avec r complexe, ou, ce qui est 

équivalent, sous la forme :  

 avec ikxx e k− ∈֏ C

( )
0( , )  prend la forme d'une O.P.P.Hi t kxx t e ω − ψ = ψ

plus généralement, on peut chercher des solutions :

— d’une équation d’onde linéaire régissant une grandeur s(x,t)

— d’un système d’équations linéaires couplant des grandeurs [s1(x,t), s2(x,t), …]

 ( ) ( ) ( )
0 1 1 2 2

2

sous la forme ( , )  ou , ,...

avec  et  : ( ) ( ) ( ) , ( , )

i t kx i t kx i t kxs x t s e s A e s A e

k k k ik k k

ω − ω − ω −

+

 = = =
 

′ ′′ ′ ′′ω∈ ∈ ω = ω + ω ∈R RC

la relation qu’on obtient entre k et ω est appelée relation de dispersion



3

( )
0 l’onde est atténuée ou amplifiée lors de sa propagation

l’onde est stationnaire et ne se propage pas, sinon c'est bien une O.P.P.H

si 0 ( , ) :

si 0 

k x i t k xk s x t s e e

k

′′ ′ω −′′ ≠ =

′ =

 

[ ]( )
0forme intrinsèque : ( , )  avec ( ) ( ) ( )i t k rs r t s e k k ik eω − ⋅ ′ ′′= ω = ω + ω

� � �� �

vecteur unitaire dans la direction de propagation

 ( )( )
0 0si ( , ) x y z

i t k x k y k zi t k r
x x y y z zk k e k e k e s r t s e s e

ω − − −ω − ⋅= + +  = =
� �� � � � �

 les opérateurs sont simplifiés :
 

            x y z
s s s s

i s ik s ik s ik s
t x y z

∂ ∂ ∂ ∂
= ω = − = − = −

∂ ∂ ∂ ∂

2 2 2
2 2 2 2 2

2 2 2 x y z
s s s

s k k k s k s A k A
x y z

∂ ∂ ∂  ∆ = + + = − + + = −  ∆ = −
 ∂ ∂ ∂

� �
laplacien

 

div
yx z

x x y y z z

AA A
A i k A k A k A

x y z

∂∂ ∂
 = + + = − + +
 ∂ ∂ ∂

�
divergence

 2s k s∆ = −
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rot

x xx

y y y

zz z

x A Ak

A A i k A
y

kA A

z

→

∂ 
 ∂           ∂ = ∧ = − ∧     ∂              ∂  
 ∂

�
rotationnel

( )
0pour une O.P.P.H : ( , )  qui se propage selon , on a :i t k rA r t A e kω − ⋅=

� �� � ��

 

2    div     rot      
A

i A A ik A A ik A A k A
t

→∂
= ω = − ⋅ = − ∧ ∆ = −

∂

�
� � � � � � � � �

1.2 Vitesse de phase

• définitions  pour O.P.P.H  ,  on a , avec xx k ke k= ∈
� �

ր Rsans atténuation
 ( )

0( , ) i t kxs x t s e ω − =

  est appelée phase de l'ondet k r t kxϕ = ω − ⋅ = ω −
� �
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 si  varie de d  et  de d ,  varie de d d dt t x x t k xϕ ϕ = ω −

d
même phase en d  à d  qu'en  à d 0

d

x
x x t t x t

t k

ω
+ + ⇔ ϕ = ⇔ =

 est la vitesse de propagation de la phase ;  est la v
k k

ϕ
ω ω

 = vitesse de phase

 

milieu NON dispersif : éq. d'onde de d'Alembert  k v c
c k

ϕ
ω ω

 = ⇔ = = ∀ω

toutes les composantes sinusoïdales de la perturbation se propagent à la même vitesse

milieu DISPERSIF  dépend de ( )
( )

v k
v

ϕ
ϕ

ω
 ω ω =

ω

la relation de dispersion n’est plus linéaire

les composantes sinusoïdales d’une O.P.P se propagent à des vitesses différentes, 

ce qui entraîne la déformation de la perturbation lors de sa propagation
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• dispersion dans un milieu transparent (non absorbant)

pour les O.P.P.H électromagnétiques dans un milieu transparent, on définit l’indice 

de réfraction n de ce milieu par :

 c
v

k n
ϕ

ω
= =  1 dans le domaine de l'optiquen >

comme n dépend de ω (ou de la longueur d’onde λ dans le vide), on a dispersion : 

les différentes composantes sinusoïdales du signal ne se propagent pas à la même 

vitesse

phénomène observé quand un prisme sépare les différentes couleurs d’un faisceau 

de lumière blanche incident
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les milieux transparents diélectriques sont également caractérisés par εr permittivité 

relative, qui dépend de ω

par rapport au vide : ε0 → ε0 εr

r 0 0 r

1 c
c vϕ→ = = 

ε ε µ ε

vide milieu
milieu

2 2 2
                        

n
k

c n

ω π π π λ
= = → = =  λ =

λ λ λ

2

Pvide
0

x
E

S e
c

= →
µ

� �

air sec

eau

verre « crown » 
(classique)

verre « flint »

diamant

1,000277 1n = ≃

1,333 4 / 3n = ≃

1,520 1,5n = ≃

1,650n =

2,415n =

quelques valeurs de n à 15°C

� �2

p
0

x
nE

S e
c

=
µ

n
k

v cϕ

ω ω
= =

rn = ε
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• propagation sans atténuation d’une O.P.P quelconque dans un milieu dispersif

0

1 1
( 0, ) ( ) ( ) d Re ( ) d  puisque ( , )

2

i t i ts x t F t F e F e s x t

+∞ +∞
ω ω

−∞

 
 = = = ω ω = ω ω ∈
 π π
 

 ɶ ɶ R

 ( ) est la transformée de Fourier de ( 0, ) ( )F t s x t F tω ω = =ɶ֏ ֏
 

( ) ( ) di tF F t e t

+∞
− ω

−∞

 
 ω =
 
 

ɶ

milieu linéaire  pour déterminer le signal s(x ≠ 0,t) il faut sommer toutes les 

composantes sinusoïdales en x à l’instant t

une telle composante s’est propagée à la vitesse de phase                       
 

( )
( )

v
k

ϕ
ω

ω =
ω

 [ ]( )
( )  en 0 ( )  en 0

i t k xi tF e x F e x
ω − ωωω = → ω ≠ɶ ɶ

[ ] [ ]( ) ( )

0

1 1
 ( , ) ( ) d Re ( ) d

2

i t k x i t k x
s x t F e F e

+∞ +∞
ω − ω ω − ω

−∞

 
  = ω ω = ω ω
 π π
 

 ɶ ɶ
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0 0 0
0

0 0

la composante ( ) , qui se propage à la vitesse de phase 
( )

i tF e v
k k

ω
ϕ

ω ω
ω = =

ω
ɶ

est une composante mathématique du signal ; son spectre est une raie infiniment fine

 pas de réalité physique, puisqu’elle correspond à une onde purement sinusoïdale,

sans début ni fin.

dans le domaine des ondes électromagnétiques, on peut donc avoir vϕ > c , vitesse 

de la lumière dans le vide

une O.P.P.H ne transportant ni énergie, ni information, ne va pas à l’encontre de la 

théorie de la relativité d’Einstein
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1.3 Vitesse de groupe

• première approche, somme de deux O.P.P.H

[ ] [ ]

[ ] [ ]
1 2

0 0 0 0 0 0

( , ) ( , )

0 0 0

( , ) cos ( / 2) ( / 2) cos ( / 2) ( / 2)

             2 cos cos / 2 / 2

s x t s x t

s x t S t k k x S t k k x

S t k x t k x

 = ω − δω − − δ + ω + δω − + δ

= ω − δω⋅ − δ ⋅

����������������	 ����������������	

1 2 0 0

0

 et  deux O.P.P.H de même amplitude  et de pulsations proches / 2

avec 

s s S ω ± δω

δω << ω

0 0 0 0

propagation dans un milieu dispersif linéaire :

d
( ) ( )  (D.L à l'ordre 1)

2 2 d 2

k k
k k k

δω δω δ 
ω ± = ω ± ⋅ ω = ± 

ω 

[ ]

[ ]
0 0 0 0

0 0

on a des  : 

cos  de période 2 /  est modulée par :

2 cos / 2 / 2 , enveloppe de période 2 /

t t k x T

t S t k x T T

ω − = π ω

δω⋅ − δ ⋅ = π δω >>

֏

֏

 battements
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Ces battements s’expliquent par les interférences entre s1 et s2 : 

— interférences constructives aux instants pour lesquels, en x donné, s1 et

s2 quasiment en phase  l’enveloppe a un maximum d’amplitude

— interférences destructives aux instants pour lesquels s1 et s2 sont quasiment en 

opposition de phase  l’enveloppe s’annule

[ ] [ ]00 02 cos / 2 / co, s( ) 2 t k xs kx xt S tδω⋅ ω= ⋅ −− δ ⋅

0

0

"O.P.P.H", se propage à v
k

ϕ
ω

=

g 0 0
d d

, se propage à 1/ ( ) ( )
d d

k
v k

k k

δω ω
= ω

δ ω
≃ ≃enveloppe

« vitesse de groupe » car c’est la vitesse des crêtes du signal, lieu des 

interférences constructives des différentes O.P.P.H constituant le signal
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remarque : avec deux O.P.P.H, l’onde résultante, qui n’a toujours ni début ni fin, 

n’est pas physiquement réalisable
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• deuxième approche, somme continue d’O.P.P.H

si on somme un continuum d’O.P.P.H de pulsations très proches de ω0, ces ondes

de la forme                                                                    interfèrent constructivement 

en x à la date t si leur phase :

0( , , ) ( ) ( ) est identique, égale à ,  ,  au voisinage de x t t k x n nϕ ω = ω − ω + φ ω π ∈ ωN

( ) phase des ondes en 0 à 0x tφ ω = =

0 0 0
d d d

( , , ) ( ) ( )  ( ) ( ) ( ) 0
d d d

k
x t t k x Cte t x

ϕ φ
ϕ ω = ω − ω + φ ω = ∀ω ω = − ω + ω =

ω ω ω

0 0
d d

( ) ( )
d d

k
x t

φ
⇔ ω = + ω 

ω ω

la vitesse de groupe est la vitesse de l’enveloppe du signal (là où la phase 

des ondes de pulsation très proche de ω0 est constante). 

paquet d’onde étroit 

g 0
d d

( )
d d
x

v k
t k

ω
= =

remarque : si ϕ = nπ +π / 2, les interférences sont destructives et leur somme est 

nulle, mais le lieu de ces interférences se propage toujours avec vg tout comme les 

autres points de l’enveloppe de l’O.P.P.H de pulsation ω0, caractérisés par une 
phase constante quelconque donc une amplitude constante

[ ]( )cos ( ) ( )  , avec ( ) 0a t k x aω ω − ω + φ ω ω ≥
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• troisième approche, expression temporelle d’un paquet d’onde étroit

paquet d’ondes étroit (ou train d’ondes) : le spectre possède une largeur ∆ω
très petite autour de ω0, mais non nulle (signal réalisable physiquement)

pour simplifier les calculs : 

paquet d’ondes dont le spectre 

est un rectangle 

 

0 0 0pour ,  : D.L à l'ordre 1 en  de ( )
2 2

k
∆ω ∆ω 

ω∈ ω − ω + η = ω − ω ω ω  
֏
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0 0 0 0 0
d d

( ) ( ) ( ) ( ) ( )
d d

k k
k k kω = ω + ω − ω ω = + η ω

ω ω

[ ]
0

0 0 0

0

d
2 ( ) ( )

( ) d0

0

2

1
( , ) Re ( ) d Re d

k
i t k x

i t k x F
s x t F e e

∆ω
ω +   +∞ ω − + ω−ω ω  ω − ω ω  

∆ω
ω −

 
  
  = ω ω = ⋅ ω

 π π     
 

 ɶ

[ ]

[ ]( )

0

0 0

0 0

d
2 ( )

d0

2

0
0

( , ) Re d

d
         Re sinc ( )

2 d

k
i t x

i t k x

i t k x

F
s x t e e

F k
e t x

∆ω
 

η − ω ω − ω 

∆ω
−

ω −

 
 
 = ⋅ η

π  
 
 

∆ω ∆ω  
= ⋅ − ω  π ω  



 sin
sinc( )  fonction sinus cardinal

X
X

X
=

0η = ω − ω
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0

0
g 0

0
0 0 0

0
0 0

g

O.P.P.H, célérité 
d

enveloppe, célérité ( ) 
d

d
( , ) sinc ( ) cos( )

2 d

        sinc cos( )
2

v
kv k

k

F k
s x t t x t k x

F x
t t k x

v

ϕ

ω
=

ω
=

∆ω ∆ω  
= − ω ⋅ ω −  π ω  

  ∆ω ∆ω
= − ⋅ ω −   π    

������	
����������	

finalement :

: vitesse à laquelle se déplace l’enveloppeg
d

  vitesse de groupe
d

v
k

ω
=

du paquet d’ondes de faible largeur spectrale autour de ω0
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vg a un sens physique car l’enveloppe transporte de l’information

pour une onde électromagnétique vg ≤ c célérité de la lumière dans le vide

analogie avec la modulation d’amplitude : la « porteuse » ne véhicule aucune 

information, contrairement au signal modulant qui enveloppe la porteuse

si la largeur spectrale n’est plus très petite, dispersion  déformation du paquet d’ondes

ici les composantes de plus grandes fréquences se propagent plus vite 

que celles dont les fréquences sont les plus faibles : il y a étalement d’un 

paquet d’ondes lors de sa propagation
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1.4 Aspect énergétique
 

0

2
2 2 20

0 0
g

enveloppe, reste constante
         sur une durée  

( , ) ( , ) sinc cos ( )
2

T

F x
x t A s x t A t t k x

v

  ∆ω ∆ω 
Φ = ⋅ = − ⋅ ω −     π     ������������	

grandeur énergétique (énergie volumique, vecteur densité volumique de courants 

d’énergie pour une O.P.P), fonction quadratique du signal 

 

0

2
20

g

( , ) sinc
2 2T

FA x
x t t

v

  ∆ω ∆ω 
Φ = −     π     

 

0
0

2
moyenne sur T

π
=

ω

en l’absence d’absorption, l’énergie moyenne est transportée par l’enveloppe, et 

se propage donc à la vitesse de groupe : cU = vg
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1.5 Atténuation

• les différentes causes
( )

0

2

O.P.P : ( , ) , avec ,  solution de l'équation de propagation

dans le milieu linéaire ( ) ( ) ( ), avec ( , )

i t kxs x t s e

k k ik k k

ω − += ω∈

′ ′′ ′ ′′ ω = ω + ω ∈

R

R

0p (re )mie 0r ca
1

 : onde  :  et  ( )
(

s
)

x k k′ ′′ω > ω = − <
δ ω

ր

 

( )
0 0( , )

x xi t k x i
i t k x

s x t s e s e e

 ′ω − + −  ′ω −δ  δ = = l’onde s’atténue lors de sa propagation

δ (qui dépend de ω) : épaisseur de peau

le milieu est absorbant

(ondes électromagnétiques dans un conducteur)
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milieu non absorbant, mais pour certains ω, l’onde s’atténue car c’est une somme

d’ondes rayonnées par les particules du milieu qui interfèrent destructivement

(ondes électromagnétiques dans un plasma)

1
 : onde stationnaire : ( ) 0 et  ( ) 0deuxième

)
 cas

(
k k′ ′′ω = ω = − <

δ ω

0 0

0

( , )

( , ) cos( )

x xi t i
i t

x

s x t s e s e e

s x t s e t

 
ω + −  ωδ  δ

−
δ

 = =

 = ω
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 1
si onde  : ( ) 0 et  ( ) 0

( )
x k k′ ′′ω > ω = + >

δ ω
ր

 

( )
0( , )

x
i t k x

s x t s e e
′ω −δ =

onde amplifiée lors de sa propagation, par exemple : milieu actif d’une cavité laser

le pompage (apport d’énergie extérieur) permet d’obtenir des désexcitations stimulées

qui amplifient l’onde électromagnétique lors de sa propagation

• vitesse de phase
 

( )
0onde atténuée : prenons ( , )

x
i t k x

s x t s e e
− ′ω −δ=

 

propagation si 0k v
k

ϕ
ω

′ ≠  =
′

 

[ ]( )( )

0

1
( , ) Re ( ) dx i t k xks x t F ee

+∞
′ω − ω′′ ω

 
 = ω ω
 π
 
 ɶ

 

0

0
g 0

0
0 0

g

O.P.P.H, célérité 
d

enveloppe, célérité ( ) 
d

( , ) sinc cos( )
2

v
kv k

k

F x
s x t t t k x

v

ϕ

ω
=

ω ′′=
′

  ∆ω ∆ω
′− ⋅ ω −   π    

������	
����������	

≠


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la vitesse de groupe ainsi définie n’a plus de sens physique lorsque l’onde est 

atténuée, et :
 

0
d

( )
d

Uc k
k

ω
′

′
≠

pour calculer la vitesse cU de propagation de l’énergie moyenne, on effectue des

bilans :

 

P ac

ac

,  ...U U

S J
c c

u u
= =

� �
� �


