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3. ONDES PLANES ACOUSTIQUES / TUYAUX

SONORES

3.1 Equations de propagation

tuyau sonore 5
de section.”” T
X X + dx > X
M §(X +dx, t)k
Pel‘éu%ation —~»
X X + dx > X

1D 1 py(x, 1) p1(xt) V(X 1) =v(xt)e, :a—ééx E(x,t)

ot /
déplacement a t de la particule fluide qui est au repos en x
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N
tuyau sonore <
de section.” 0s
x X + dx > X
M _i(x +dx, t)>_
peréurzbation < 5
x X + dx > X

(1) P.F.D appliqué a X, en négligeant I'action de la pesanteur :

2
poydxa& (g + pi[x+E(X1),t] )7 = (g + p[x+dx+E(x+dx,1),t]).7

ot t ¢ t f
ordre 2 en la perturbatlon ordre 2
car py[x+&t] = py(xt)+ p1g = py(x, )
82 ordre 2 5
= PO dx? 2= pr(x 1) — py(x +dx,t) = — 2l dx

ot° X



D
9%t Op; .oV Op I | s A
on retrouvelpn —= = ——=1 (1) soit pn — = -1 (P.F.D linéarisé : pn—=—-qradp; a 1D
{po ot ox ( )} P05t T ox ( Po 5 =790 )
tuyau sonore y
de section.”” repos
X X-:-dX > A
:ﬁ(x,t) | :g(x+dx,t)>:
b ¢
pert;urbation —>
x x+§dx A

(2) la masse de X se conserve :
po-~ dx =[pg +p1(X.1)].7 (X +dx+&(x+dxt)—[x +&(x,1)] )

t t
p1[x+& t]=py(x,t) alordre 1 ordre 2 en la perturbation

d
:>p0:[po+p1(x,t)]-(1+a—f"(j soit [p1+po%:0(2)]
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on retrouve, en dérivant par rapport au temps :

%+ W _ 0 (équation de continuité linéarisée 9P+

%P1 5 divi=02a 1D
ot POy ot PO )

(3) la relation linéarisée traduisant I'évolution isentropique d’'une particule d’'un
fluide parfait est inchangeée :

-

[ P1=PoXsP; (3) ]

0% _ 9
Po S—— ap1 (1)
on élimine p, en reportant (3) dans (2) : | 9t X
a % o
P1+po> =0(2) XsPi 30 =0(4)

o(4 2 2
Xs(1)—#:> g %z 128§,avec c= 1
X ox= c¢° ot \JPoXs

v, py et pq sont liés a & par des relations scalaires linéaires

— obéissent aussi a d'Alembert 1D
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ﬂes particules fluides vibrent dans une direction colinéaire a la direction de \
propagation de 'onde acoustique
= les ondes acoustiques dans les fluides sont des ondes de compression /
détente longitudinales

compression compression

\ détente /

3.2 O.P.P / impédance acoustique

Ol

e impédance acoustique

x,)=F, (t—x/c)=F, (6
O.P.Px/':{m( ) p1( ) p1()aveCG:t—x/C:6(x,t)

vix,t)=F, (t—x/c)=F,(0)

oV oy dF, 1dF

1) pn L =22
) po; ax:pode c de

— = Fp =pgCF, pour une solution ondulatoire

[O P.Px./ : pj=2Z, v, avec Z,; = pgC=+/pg / Xs impédance acoustique du quide]
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[ Zyc =PoC en kg-m?.s’] OPPxN ip=- ac-v}

e aspect énergétique
O.P.P qui se propage dans le sens des x croissants

1

1 9 1 2 22 1 o
€ ZEPOV et e, :EXSM ZEXSZac 4 ZEPOV
ﬂH_Z//V ‘\\;%c: Po
—4ac’
2 xS

= équipartition et Uy = poV

Jac = P1VEx = poCVEy :{lac =Zac <V2> = PoC<V2ﬂ

A
Gy = ¢ &, Vitesse de propagation de I'énergie ? SU,.
- — e ] — - —» X
SUye = Uge-” cydt et aussi SU, = J,.-7 &,dt
>

N J 2 Cudt

:{CU =acJ soit ici : & = pocv2 &, =cé, =C
Uac PV
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3.3 Calcul numérique d’une perturbation acoustique pour une O.P.P.H dans l’air

O.P.P.H se déplacant dans le sens des x croissants
(particule fluide en x, v =0
p(x) = pp =10 Pa

epos : - Mpy _29-10°x10°

- =1,19 kg-m™

PX)=P0 = 7 =8 314293 9
T(x)=Ty=293 K

- . | ag

particule fluide en x+&(x,t), v = v

perturbation : { P(X:t) = pg + py(X,1) . YRTy _ Ca4n o
p(X,f) = pg +pP1(X. 1) M
T(x1)=To + T(x,1)

pour une O.P.P, v, p,, p, et T, sont des grandeurs proportionnelles entre elles
(cf. plus loin), donc toutes en phase
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= la perturbation s’écrit donc :

=Zsin(ot-—kx) > Vv =V = g—f = |/ cos(mt — kx) = wE cos(mt — kx)

py = Pycos(wt — kx) = p4 = poXsP = Py /c® = R;cos(wt—kx) = A / ¢® cos(mt — kx)

N\

| [ = ®1cos(mt — kx)
calcul des amplitudes dans le cas ou l'intensité acoustique est I, =l =1,0 W - m

— calcul de V, : maX_ZaC< 2>:poc<v2>:%poc\/12

= V= 2hnax 2x1,0 =7,0 cm-s’]
1,19x343

—calculde P, : P =pycV) =200Chax =~+2%1,19%343x1,0 =29 Pa

— calcul de R, 91252\/%:\/&1,1%1,0:2’4.10_4 kg-m

o 3433



DN
— calcul de ®; : évolution a S = Cte d'une paticule fluide : Tp ¥ =Cte

:>dT+1—ydp:O = 7—1+1_Y'O1 =0
I v p linéarisatonTy v Py

o, =1 1Top 040 293 5q9_4 004k
o 1,40 105
—calculde & E:V1 _ avec 20 Hz <71 <20 kHz
o 2nf
) —2
2910~ _ 0,56 ym <z <0,56 mm=">"17
2nx20-10 2nx 20
/conclusion:E:Hum« A=c/f=34 cm pour f=1kHz \
V,=7,0 e e e @ — BB la Iipéarigation
. des équations du
P =29 Pa<< py =10~ Pa probléme est
o4 404 L 3 B -3 parfaitement
Ry =2,4-10 "kg-m™ <<pg=1,19kg-m justifiée

\_ ®; =0,024 K << Ty =293 K -
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3.4 Réflexion / transmission en une discontinuité de structure

milieu (1) milieu (2)
incidente
tuyau sonore

de section . ﬁ transmllse
/ réflechie \

X =0 »X
0o x" Z M=z ¢ 00? xs? z,.P =2 o
{vi(t—x/q) +{vr(t+x/c1) V@ (x,t) = vy (t—x/ cp)
pi(x.t)=Zvi(t=x/c;) (Pr(t)==Zvy (t+X7Ct) || p@(x.t) = py(x,t) = Zovy (t— x/ Cp)

v (x,1)
@) (x,1)

viD(x,1)
piV(xt)

perturbation : l'interface (imperméable) en x =0 au repos se déplace de &(1)

onde dans (1) : { onde dans (2) : {

3 la vitesse u(t) = 3—§ =vD(x=E),0) =v@ (x=E(1)*, 1)
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alordre 1 : viD(x=E(t)", 1) = v (x=07,1) et Vi@ (x = £(1)F,1) = vI®) (x =07, 1)

:[ viD(x=0",1)=v®(x = O+,t)] - continuité de la vitesse

P.F.D a l'interface de masse m nulle :

_ [po + oD (x = O‘,t)}?—[po +p@(x = 0+,t)]5ﬂ :>[p1(1)(x= 0-,1) = & (x = O+,t)]

: continuité de la surpression

N {vi(t>+vr(t>= (1) -Z, |z
Zvi(t) - Zv (= Zowi(t) | 1 |1
" ™
v _Z-2
vi(t) 4 +Z
= coefficients de réflexion et transmission en vitesse | - ) 4+ 2
- Vt(t) _ 221
vi(t) Z4+Z
\\ |( ) 1 2 Y

11



Psia 2l
i

intensités incidente, réfléchie, transmise :

lac(i) :Z1<Vi2> lac(r) :Z1<Vr2>:Z1r2<Vi2>

eV = Z2(W?) = 27 (VP

-~

\

coefficients de réflexion et transmission en puissance :

~

2
p_lac’ _ 2 :(21 —sz _Zf-2212y+ Z)°
Iac(l) AR~ (£1+ 2 )2
t
T — Iac(.) _ 25 2 = 4425
/ac(l) 4 (44 "‘22)2

\ — R+T =1 conservation de I'énergie (pas d'énergie absorbée) /

si les impédances acoustiques sont tres différentes : Z; << 2, ou Zp << £

LH-2p

2
j ~1etdonc T =0
VARNL)

s
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exemple :

air

incidente\ / réfléchie

(2) : eau= Z, =pg'?c; =1,0-10°x1,4-10% =1,4.10° kg-m™2 5™

(1):air = Z =po\ ey =1,19x343 =410 kg- m?2 -5
1=Po "G

transmise

\
v eau
v
X

— réflexion quasi-totale (lorsqu’on a la téte sous l'eau, l'intensité des sons
provenant de l'air est tres faible)

propriété mise a profit pour réaliser des images médicales par échographie : des
ondes ultrasonores (de frequences comprises entre 0,5 MHz et 50 MHz) se
réflechissent plus ou moins sur les organes suivant leur composition
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3.5 Réflexion totale en bout de tuyau / ondes stationnaires

e C.A.L et calcul de I'onde dans le tuyau

on considere deux cas particuliers pour Uy incidente
lesquels la C.A.L en bout de tuyau s’écrit 7 c —> @a
sous la forme : ac 4+“—
réfléchie
pi(x=0,t)=2v(x=0,t) avec Ze R tuyau sonore 0

— tuyau est fermé par une paroi fixe : on impose alors un nceud de vitesse
Vix=0,)=0Vtes Lo
— tuyau est ouvert : on impose alors un nceud de surpression :
pi(x=0,t)=0Vt= ZL=0
(C.A.L bien réalisée seulement si a << A pour une onde harmonique)

rv(x,t) =V (t—ij+ V, (t+§j
c c

X X
py(X,t) = ZcVi (t—;j —ZacVy (t+;)

dans le tuyau : <

"
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C.AL:p(x=0,t)=2v(x=0,t) = Z,cvi(t)— ZycV, (t) = Z|vi(t) + v, (1)]
é — coefficient de réflexion en vitesse r = Vill) _ Zac =2 A
Vi(t) Zac +Z
(systéme analogue a un cable coaxial fermé par une résistance : pas d’onde réfléchie
\si Z=2,) ,

dans les deux cas étudiés,

exemple :

r\ =1 : réflexion totale

tuyau ferméen x=0=2 5= r =-1

dans le cas d’'une O.P.P.H incidente, on peut utiliser la notation complexe

dans le tuyau :

vi(x,1) = vpe'®t"%) avec k=2
— C
v(x,t) = Ve I(ot—kx) Voei(oot+kx)
oi+kx)
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N
(Z(x,t) _ Voeioot |:e—ikX _ eikX]
- z _ ] V(X,f) = 2vy sin(kx) sin(t)
soit | —2i sin(kx) notation reelle : I e
py(x.t) = Z,:vpe'® [e‘ikx + e/ } | 20"
S ~ g I'onde acoustique est stationnaire
2 cos(kx)

les nceuds de vitesse sont les
ventres de surpression et vice versa

i21 effet de souffle sur la paroi solide




Psia.2l
=

e aspect énergétique

6, = %p0v2 = 2pgVo° sin(kx) sin® (ot)

2

€ = 1x 3,012 =2 SZaC2v02 cos? (kx) cos? (ot) =2pgVp 0032(kx) cosQ(wt)

2 !
PO
Z..= |20
ac XS

equipartition de I'énergie pour une onde stationnaire
aux noeuds de vitesse, I'énergie est uniquement potentielle ; aux noeuds de
pression, elle est uniqguement cinétique

(&) = povo® sin®(kx) <ep> = poVo? cos? (kx)

= (Uge) ={€)+ <ep> = poVo°
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— - 2 . . .
Jac = Pve, = 4ZacVO S|n(kX) COS(kX)SII’]((Dl‘) COS((Dt)eX plans nodaux de J,, Jac
, . , : A
les nceuds de J,. sont ceux de p; ET de v ;
f > X
. . A é
plans d'équation x = —nZ avec ne N : plans nodaux ~
ils ne sont pas traversés par 'énergie, 5
qui oscille donc entre deux plans A0

nodaux consécutifs

[<Jac> =0 : pas de propagation en moyenne de I'énergie pour une onde stationnaire ]

3.6 Modes propres

si on impose plusieurs C.A.L, les pulsations sont quantifiées : ® = w, avec ne N
'onde se décompose en modes propres sinusoidaux de pulsation o,
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— cas d’un tuyau sonore de longueur L ouvert a ses deux extrémités, ou bien fermé
a ses deux extrémités « L . < L .
tuyau ferme a ses tuyau ouvert a ses
deux extremites deux extrémités

= L= n% & 0=, =%,ne N* fondamental : oy :n_Lc, harmoniques : ®, = Nw;

— cas d’un tuyau sonore de longueur L ouvert a une extrémité, fermé a 'autre

:>L’+&:m&,me N, soit : 4 L'
4 2

= (m- 1) s maty - 1] XX

tuyau fermé a une extrémité

V4 TCC . / /
fondamental : @y = o harmoniques : ®,, =(2m—1)w; et ouvert a I'autre

que les harmoniques de rang impair
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si on veut la méme pulsation fondamentale dans les deux cas, il faut L= L/ 2

deux instruments de musique a vent comme la flGte (C.A.L : ouvert / ouvert) et la
clarinette (C.A.L ouvert / fermé) peuvent donc jouer la méme note (méme hauteur),
mais auront un timbre différent du fait de 'absence des harmoniques de rangs pairs
pour la clarinette

a longueur égale, la fréquence fondamentale de la clarinette est deux fois plus petite
que celle de la flte : la clarinette joue la méme note mais a I'octave inférieure
un tuyau sonore, par exemple ouvert

< L >
i
/ ouvert, est alors analogue a la : !

corde de Melde tuyau ouvert a ses
deux extremités

3.7 Résonances
on imposer o (avec un haut-parleur)

on observe des résonances (finies : viscosité du fluide et non-linéarités qui ne sont plus
négligeables pour les fortes amplitudes) pour :
nmc

O=w, =
n 1
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principe des instruments a vent : le tuyau sonore sert de resonateur

I'excitateur :

>>> anche (clarinette, saxophone : tuyau = fermé a l'extréemité ou se trouve
I'anche)

>>> biseau (fllte, orgue : I'extrémité ou se trouve le biseau est largement ouverte)
>>> levres de l'instrumentiste (trompette, trombone, cor...)

Du fait des interactions entre le résonateur et I'excitateur, le systeme est un
oscillateur qui produit a partir d’'un souffle continu des sons dont le spectre ne
contient que les pulsations o,

Cﬁ. l anche
air —p iseau
O\ .
flite a bec: la partie flexible (biseau) clarinette: I'anche vibre sur les levres et vient

vibre périodiquement périodiqguement fermer 'embouchure
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