
3. ONDES PLANES ACOUSTIQUES / TUYAUX 
SONORES
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3.1 Équations de propagation

déplacement à t de la particule fluide qui est au repos en x
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(1) P.F.D appliqué à Σ, en négligeant l’action de la pesanteur :
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 2
1 1

0 02
on retrouve  (1) soit 

p pv

x t xt

∂ ∂∂ ξ ∂
ρ = − ρ = −

∂ ∂ ∂∂
0 1(P.F.D linéarisé : grad  à 1D)

v
p

t

→∂
ρ = −

∂

�

(2) la masse de Σ se conserve :

[ ] [ ]( )0 0 1d ( , ) x d ( d , ) x ( , )x x t x x x t x tρ = ρ + ρ ⋅ + + ξ + − + ξS S

ordre 2 en la perturbation

[ ]0 0 1( , ) 1x t
x

∂ξ 
 ρ = ρ + ρ ⋅ + 

∂ 

[ ]1 1, ( , ) à l'ordre 1x t x tρ + ξ = ρ

1 0soit   0 (2)
x

∂ξ
ρ + ρ =

∂
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on retrouve, en dérivant par rapport au temps :

�1
0(équation de continuité linéarisée div 0 à 1D)v

t

∂ρ
+ ρ =

∂

 

1
0 0

v

t x

∂ρ ∂
+ ρ =

∂ ∂

(3) la relation linéarisée traduisant l’évolution isentropique d’une particule d’un 

fluide parfait est inchangée :
 

1 0 1 (3)Spρ = ρ χ

on élimine ρ1 en reportant (3) dans (2) : 
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∂
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∂
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∂ ξ ∂ ξ
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1 1,  et  sont liés à  par des relations  linéaires

obéissent aussi à d'Alembert 1D

v p scalairesρ ξ


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les particules fluides vibrent dans une direction colinéaire à la direction de 

propagation de l’onde acoustique

 les ondes acoustiques dans les fluides sont des ondes de compression / 

détente longitudinales

3.2 O.P.P / impédance acoustique

 ( )

( )
1 1

1(x, ) / ( )
O.P.P  :  avec / ( , )

(x, ) / ( )

p p

v v

p t F t x c F
x t x c x t

v t F t x c F

= − = θ
θ = − = θ

= − = θ
ր

1

1

1
0 0 0

dd 1
(1) 

d d

pv
p v

Fp Fv
F cF

t x c

∂∂
ρ = −  ρ =  = ρ

∂ ∂ θ θ
pour une solution ondulatoire 

1 ac ac 0 0O.P.P  :  , avec /  impédance acoustique du fluideSx p Z v Z c= ⋅ = ρ = ρ χր

• impédance acoustique
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 -2 -1
ac 0  en kg m sZ c= ρ ⋅ ⋅  

1 acO.P.P  : x p Z v= − ⋅ց

• aspect énergétique

O.P.P qui se propage dans le sens des x croissants

 
2 2 2 2 2

c 0 p 1 ac 0
1 1 1 1

 et 
2 2 2 2

S Se v e p Z v v= ρ = χ = χ = ρ

1 acp Z v= ⋅

 

0
ac

S

Z
ρ

=
χ

équipartition et 

� � �2
ac 1 0x xJ p ve cv e= = ρ

 

1 0p c v= ρ ⋅

2
ac 0u v= ρ

 2 2
ac ac 0I Z v c v = = ρ

 

ac ac dUU u c tδ = S

  vitesse de propagation de l'énergie ?U U xc c e=
� �

 

ac acet aussi dxU J e tδ =
� �

S

 
�

� ac

ac
U

J
c

u
 =

 2
0

2
0

soit ici : U x x
cv

c e ce c
v

ρ
= = =

ρ

� � � �
(c’est logique)

pas en ohm !
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3.3 Calcul numérique d’une perturbation acoustique pour une O.P.P.H dans l’air

O.P.P.H se déplaçant dans le sens des x croissants

 

0 1

0 1

0 1

particule fluide en ( , ), 

( , ) ( , )perturbation : 

( , ) ( , )

( , ) ( , )

x x t v
t

p x t p p x t

x t x t

T x t T T x t

∂ξ
+ ξ = ∂

 = +
ρ = ρ + ρ


= +

 

5
0

3 5
-30

0
0

0

particule fluide en , 0

( ) 10  Pa

repos : 29 10 10
( ) 119 kg m

8 314 293

( ) 293 K

x v

p x p

Mp
x ,

RT ,

T x T

−

=


= =

 ⋅ ×
ρ = ρ = = = ⋅

×
 = =

 

-10 343 m s
γRT

c
M

= = ⋅

pour une O.P.P, v, p1, ρ1 et T1 sont des grandeurs proportionnelles entre elles 

(cf. plus loin), donc toutes en phase



8

 la perturbation s’écrit donc :

1 1

2 2
1 1 1 0 1 1 1 1

1 1

sin( ) cos( ) cos( )

cos( ) / cos( ) / cos( )

cos( )

S

t kx v v V t kx t kx
t

p P t kx p p c R t kx P c t kx

T t kx

∂ξ
ξ = Ξ ω −  = = = ω − = ωΞ ω − ∂


= ω −  ρ = ρ χ = = ω − = ω −



= Θ ω −

calcul des amplitudes dans le cas où l’intensité acoustique est
 -2
ac max 1 0 W mI I ,= = ⋅

— calcul de V1
2 2 2

max ac 0 0 1
1

:  
2

I Z v c v cV= = ρ = ρ

 

-1max
1

0

2 2 1 0
7 0 cm s

119 343

I ,
V ,

ρ c ,

×
 = = = ⋅

×

— calcul de P1 1 0 1 0 max :  2 2 119 343 1 0 29 PaP ρ cV ρ cI , ,= = = × × × =

— calcul de R1

 

4 -30 max1
1 2 3 3

2 2 119 1 0
:  2 4 10  kg m

343

ρ IP , ,
R ,

c c

−× ×
= = = = ⋅ ⋅
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— calcul de Θ1

1

: évolution à  d'une paticule fluide : S Cte Tp Cte

−γ

γ= =

 

1 1

linéarisation 0 0

d 1 d 1
0 0

T pT p

T p T p

− γ − γ
 + =  + =

γ γ

 

0
1 1 5

0

1 0 40 293
29 0 024 K

1 40 10

T ,
P ,

p ,

γ −
Θ = = × × =

γ

— calcul de Ξ
 

1 1:   avec 20 Hz 20 kHz
2

V V
f

f
Ξ = = ≤ ≤

ω π
 2 2

3

7 0 10 7 0 10
0 56 μm 0 56 mm

2 202 20 10

, ,
, ,

− −⋅ ⋅
 = ≤ ≤ =

π ×π × ⋅
Ξ

 conclusion : 11 m  / 34 cm pour 1 kHzc f f= µ << λ = = =Ξ
 -1 -1

1 7,0 cm s 343 m sV c= ⋅ << = ⋅

 5
1 029 Pa 10  PaP p= << =

 4 -3 -3
1 02,4 10 kg m 1,19 kg mR −= ⋅ ⋅ << ρ = ⋅ 

 

1 00,024 K 293 KT= << =Θ

la linéarisation 

des équations du 

problème est 

parfaitement 

justifiée
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3.4 Réflexion / transmission en une discontinuité de structure

 (1) (1) (1)
0 ac 1 1         S Z Z cρ χ =

 (2) (2) (2)
0 ac 2 2         S Z Z cρ χ =

( )

( )
i 1

1i 1 i 1

/

(x, ) /

v t x c

p t Z v t x c

−


= −

( )

( )
r 1

1r 1 r 1

/

(x, ) /

v t x c

p t Z v t x c

+


= − +
+

 

( )

( )

(2)
t 2

(2)
1 1t 2 t 2

( , ) /

( , ) (x, ) /

v x t v t x c

p x t p t Z v t x c

 = −


= = −
 (1)

(1)
1

( , )
onde dans (1) : 

( , )

v x t

p x t





 (2)

(2)
1

( , )
onde dans (2) : 

( , )

v x t

p x t





perturbation : l'interface (imperméable) en 0 au repos se déplace de ( )x t= ξ

(1) (2)d
à la vitesse ( ) ( ( ) , ) ( ( ) , )

d
u t v x t t v x t t

t

− +ξ
= = = ξ = = ξ
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(1) (1) (2) (2)à l'ordre 1 : ( ( ) , ) ( 0 , ) et ( ( ) , ) ( 0 , )v x t t v x t v x t t v x t− − + += ξ = = = ξ = =

(1) (2) ( 0 , ) ( 0 , ) : continuité de la vitessev x t v x t− + = = =

P.F.D à l’interface de masse m nulle :

(1) (2) (1) (2)
0 1 0 1 1 10 ( 0 , ) ( 0 , )  ( 0 , ) ( 0 , )p p x t p p x t p x t p x t− + − +   = + = − + =  = = =

   
S S

: continuité de la surpression

ce sont les deux C.A.L

 

i r t 2 1

1 i 1 r 2 t

( ) ( ) ( )
      

( ) ( ) ( )    1  1

v t v t v t Z Z

Z v t Z v t Z v t

+ = −
 

− =

 

r 1 2

i 1 2

t 1

i 1 2

( )

( )
coefficients de réflexion et transmission en vitesse : 

( ) 2

( )

v t Z Z
r

v t Z Z

v t Z

v t Z Z

−
= = +

 
τ = =
 +
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(i) 2 (r) 2 2 2 (t) 2 2 2
ac 1 i ac 1 r 1 i ac 2 t 2 i           I Z v I Z v Z r v I Z v Z v= = = = = τ

intensités incidente, réfléchie, transmise :

 2(r) 2 2
2ac 1 2 1 1 2 2

(i) 2
1 2ac 1 2

(t)
2ac 2 1 2

(i) 2
1ac 1 2

2

( )

4

( )

I Z Z Z Z Z Z
R r

Z ZI Z Z

I Z Z Z
T

ZI Z Z

  − − +
 = = = = 

+ + 



= = τ =
+

coefficients de réflexion et transmission en puissance :

 1 : conservation de l'énergie (pas d'énergie absorbée)R T + =

1 2 2 1si les impédances acoustiques sont très différentes :  ou Z Z Z Z<< <<

 2
1 2

1 2

1 et donc 0
Z Z

R T
Z Z

 −
=  

+ 
≃ ≃



13

 (1) -2 -1
1 0 1(1) : air 119 343 410 kg m sZ c , = ρ = × ⋅ ⋅≃

 (2) 3 3 6 -2 -1
2 0 1(2) : eau 1,0 10 1,4 10 1,4 10  kg m sZ c = ρ = ⋅ × ⋅ ⋅ ⋅ ⋅≃

exemple :

 réflexion quasi-totale (lorsqu’on a la tête sous l’eau, l’intensité des sons 

provenant de l’air est très faible)

propriété mise à profit pour réaliser des images médicales par échographie : des 

ondes ultrasonores (de fréquences comprises entre 0,5 MHz et 50 MHz) se 

réfléchissent plus ou moins sur les organes suivant leur composition
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3.5 Réflexion totale en bout de tuyau / ondes stationnaires

• C.A.L et calcul de l’onde dans le tuyau

on considère deux cas particuliers pour 

lesquels la C.A.L en bout de tuyau s’écrit 

sous la forme :

 

1( 0, ) ( 0, ) avec p x t Zv x t Z= = = ∈R

— tuyau est fermé par une paroi fixe : on impose alors un nœud de vitesse
 ( 0, ) 0 v x t t Z= = ∀ ⇔ → ∞

— tuyau est ouvert : on impose alors un nœud de surpression :

 

1( 0, ) 0 0p x t t Z= = ∀ ⇔ =

(C.A.L bien réalisée seulement si a << λ pour une onde harmonique)

 

ac      Z c

 

i r

1 ac i ac r

(x, )

dans le tuyau : 

(x, )

x x
v t v t v t

c c

x x
p t Z v t Z v t

c c

    
= − + +       


    = − − +       
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 [ ]1 ac i ac r i rC.A.L : ( 0, ) ( 0, ) ( ) ( ) ( ) ( )p x t Zv x t Z v t Z v t Z v t v t= = =  − = +

 

acr

i ac

( )
coefficient de réflexion en vitesse 

( )

Z Zv t
r

v t Z Z

−
 = =

+

(système analogue à un câble coaxial fermé par une résistance : pas d’onde réfléchie 

si Z = Zac)

 dans les deux cas étudiés, 1 : réflexion totaler =

 exemple :  tuyau fermé en 0 1x Z r=  → ∞  = −

dans le cas d’une O.P.P.H incidente, on peut utiliser la notation complexe

 
( )

i 0( , )  avec i t kxv x t v e k
c

ω − ω
= =

 ( ) ( )
0 0

( ) ( )
1 ac 0 ac 0

(x, )
dans le tuyau : 

(x, )

i t kx i t kx

i t kx i t kx

v t v e v e

p t Z v e Z v e

ω − ω +

ω − ω +

 = −


= +
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0

2 sin( )

1 ac 0

2cos( )

(x, )

soit 
(x, )

i t ikx ikx

i kx

i t ikx ikx

kx

v t v e e e

p t Z v e e e

ω −

−

ω −

  = −
 




  = +
 



������	

������	

 

0

1 ac 0

(x, ) 2 sin( )sin( )
notation réelle : 

(x, ) 2 cos( )cos( )

v t v kx t

p t Z v kx t

= ω


= ω

l’onde acoustique est stationnaire : 

les nœuds de vitesse sont les 

ventres de surpression et vice versa

effet de souffle sur la paroi solide 
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• aspect énergétique

les grandeurs énergétiques étant quadratiques (d’ordre 2 en la perturbation), il 
est nécessaire pour les calculer de revenir à la notation réelle pour p1 et v

 
2 2 2 2

c 0 0 0
1

2 sin ( )sin ( )
2

e v v kx t= ρ = ρ ω

 
2 2 2 2 2 2 2 2

p 1 ac 0 0 0
1

2 cos ( )cos ( ) 2 cos ( )cos ( )
2

S Se p Z v kx t v kx t= χ = χ ω = ρ ω
 

0
ac

S

Z
ρ

=
χ

équipartition de l’énergie pour une onde stationnaire 

aux nœuds de vitesse, l’énergie est uniquement potentielle ; aux nœuds de 

pression, elle est uniquement cinétique

 2 2 2 2
c 0 0 p 0 0

2
ac c p 0 0

sin ( )     cos ( )e v kx e v kx

u e e v

= ρ = ρ

 = + = ρ
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 2
ac 1 ac 04 sin( )cos( )sin( )cos( )x xJ p ve Z v kx kx t t e= = ω ω
� � �

ac 1les n uds de  sont ceux de  ET dœ e J p v
�

plans d'équation  avec  : plans 
4

x n n
λ

= − ∈N nodaux

ils ne sont pas traversés par l’énergie, 

qui oscille donc entre deux plans 

nodaux consécutifs

ac 0 : pas de propagation en moyenne de l'énergie pour une onde stationnaireJ =
� �

3.6 Modes propres

si on impose plusieurs C.A.L, les pulsations sont quantifiées : ω = ωn avec n ∈ N

l’onde se décompose en modes propres sinusoïdaux de pulsation ωn
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— cas d’un tuyau sonore de longueur L ouvert à ses deux extrémités, ou bien fermé 

à ses deux extrémités

,
2

n
n c

L n n
L

∗λ π
 = ⇔ ω = ω = ∈N

 

1 1fondamental : , harmoniques : n
c

n
L

π
ω = ω = ω

— cas d’un tuyau sonore de longueur L′ ouvert à une extrémité, fermé à l’autre

, , soit :
4 2

L m m ∗λ λ
′ + = ∈N

 1 1

2 2 2
m

c
L m m

L

λ π   ′ ′= − ⇔ ω = ω = −    ′   

 

1 1fondamental : , harmoniques : (2 1)
2

m
c

m
L

π
′ ′ ′ω = ω = − ω

′

que les harmoniques de rang impair
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si on veut la même pulsation fondamentale dans les deux cas, il faut L′ = L / 2

deux instruments de musique à vent comme la flûte (C.A.L : ouvert / ouvert) et la 

clarinette (C.A.L ouvert / fermé) peuvent donc jouer la même note (même hauteur), 

mais auront un timbre différent du fait de l’absence des harmoniques de rangs pairs 

pour la clarinette

à longueur égale, la fréquence fondamentale de la clarinette est deux fois plus petite 

que celle de la flûte : la clarinette joue la même note mais à l’octave inférieure

3.7 Résonances

on imposer ω (avec un haut-parleur)

un tuyau sonore, par exemple ouvert 

/ ouvert, est alors analogue à la 

corde de Melde

on observe des résonances (finies : viscosité du fluide et non-linéarités qui ne sont plus 
négligeables pour les fortes amplitudes) pour :

 

n
n c

L

π
ω = ω =
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principe des instruments à vent : le tuyau sonore sert de résonateur

l’excitateur :

>>> anche (clarinette, saxophone : tuyau ≈ fermé à l’extrémité où se trouve

l’anche)

>>> biseau (flûte, orgue : l’extrémité où se trouve le biseau est largement ouverte)

>>> lèvres de l’instrumentiste (trompette, trombone, cor…)

Du fait des interactions entre le résonateur et l’excitateur, le système est un 

oscillateur qui produit à partir d’un souffle continu des sons dont le spectre ne 

contient que les pulsations ωn


